
With the latest updates, you can now create a new Microsoft Form directly within an Excel workbook, linking the form to the workbook seamlessly.
This feature, previously available in Excel for the Web only, is now available in the Windows app, with Mac support coming soon.

Microsoft Forms Now Integrated on Excel Desktop

NEWSLETTER #146 - January 2025
www.sumproduct.com | www.sumproduct.com/thought

Liam Bastick, Managing Director, SumProduct

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Happy new year! Resolve to remain inFORMed about the
latest Excel developments It’s simple – just subscribe to our newsletter and you can stay up to date with
what’s new in Excel as well as Power BI and the winning lottery numbers. Well, maybe not lottery numbers – do you think I’d be here writing this
each month if I’d figured that out!?

Well of course I would… face-smile-beam

This month we inFORM you about Microsoft Forms now integrated into Excel and focus on Focus Cells now Generally Available too (regular readers
take note: there are some updates since our original article).

The New Year printing deadlines prevent us detailing any Power BI Updates this month, but don’t worry, that will just mean we will have a 2,000-page
newsletter next month. In the meantime, the remainder of regulars stand up to be counted: there is the usual Beat the
Boredom Challenge, Charts & Dashboards Tips, Over to AI, Excel for Mac, Visual Basics, Power Pivot Principles, Power
Query Pointers, the latest Excel Updates, plus one OR two A to Z of Excel functions and finally, we follow Keyboard
Shortcuts to the letter.

Bring it on 2025! The bad puns remain. Happy reading and remember: stay safe, stay happy, stay healthy.

http://www.sumproduct.com
http://www.sumproduct.com/thought
mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

This new integration is particularly beneficial for users who frequently collect data from others. By enabling the creation of a form directly from an
Excel workbook, you can streamline the data collection process, making it more efficient and less prone to errors.

It works as follows:

	 •	 On the Insert tab, select Forms -> New Form:

	 •	 A new browser tab will open, presenting you with a blank form to customise according to your needs. Simultaneously, a linked Table will 	
	 	 appear in your workbook, ready to synchronise with the form. As you edit the form or receive new submissions, the linked Table in your 	
	 	 workbook will automatically update, ensuring that your data is always current and accurate

	 •	 After creating your form, you can access several other capabilities from the Forms menu:

	 	 	 ○	 Preview Form: this option will open the form in preview mode in a new browser tab, allowing you to see how the form will look 	
	 	 	 	 to respondents

	 	 	 ○	 Edit Form: this option will open the form in edit mode in a new browser tab, so you can make changes to the form as needed

	 	 	 ○	 Send Form: this option will open the form in a new browser tab and show the dialog letting you send the form out to 	 	
	 	 	 	 respondents and begin collecting responses.

The new Microsoft Forms integration is available to all Current Channel users running Version 2410 (Build 16.0.18227.20000) or later. Mac users can
also look forward to this integration in an upcoming update.

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Focus Cell Now Generally Available

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

A few months back, we mentioned this feature was in Preview. Now, Microsoft has announced that Focus Cell is now Generally Available on desktop,
both Windows and Mac.

Found on the View tab in the Ribbon, ‘Focus Cell’ provides a small drop-down menu:

	 •	 Focus Cell: this toggles the feature on or off
	 •	 Focus Cell Color: this allows you to select from a wide array of, er, 10 colours to use for highlighting. Actually, that’s not true as ‘Recent 	
		 Colors’ (sic) will show other colours that you may employ:

	 	 At this stage, we are not sure what the ‘High-contrast only’ toggle switch does as it still appears to be permanently disabled.

So what does it do? It appears to enhance accessibility for the visually impaired as it highlights the active row and column of the cell selected, viz.

Here, cell B2 imitates Whoopi Goldberg’s 1985 hit ‘The Color Purple’, although clearly the colour displayed is not quite the same as the colours
depicted in the ‘Focus Cell Color’ dialog.

Clearly, this feature helps users to zoom in on the cell selected. Other colours may be used, e.g.

Here, cell A1 sees green. Envious, methinks.

If multiple cells are selected, the active cell remains highlighted:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

or

It does seem to act a little unexpectedly though if entire rows or column are chosen:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Presently, this feature now appears to work with ‘Freeze Pane’ or ‘Split’
employed, but still has some issues with files created in earlier versions
of Excel.

To avail yourself of this colourful feature, you must be using Version
2410 (Build 18118.20000) or later for Windows and Version 16.91 (Build
24109300) or later for Mac.

Suppose you have a Table named Data in Excel, containing a list of names under the column Name and corresponding numerical data under the
column Grade, viz.

Your task is to write a single Excel formula that sums the Grade data between two names exclusively, which we referred to as Name_1 (Cell G28)
and Name_2 (Cell G29). These names are inputs that could be changed, and the sum should dynamically update to reflect the range of data between
these two names in the Data table.

As always, there are some requirements:

	 •	 the formula needs to be within just one column (no “helper” cells)

	 •	 the solution must work even if the order of Name_1 and Name_2 are swapped in the list
	 •	 the formula should be dynamic so that they should update when a new entry was added.

Sounds easy? Try it. One solution just might be found later in this newsletter – but no reading ahead!

With many of us currently “working from home” / quarantined, there are
only so Zoom / Teams calls and virtual parties you can make before you
reach your (data) limit. Perhaps they should measure data allowance
in blood pressure millimetres of mercury (mmHg). To try and keep our

readers engaged, we will continue to reproduce some of our popular Final
Friday Fix challenges from yesteryear in this and upcoming newsletters.
One suggested solution may be found later in this newsletter. Here’s this
month’s…

Beat the Boredom Challenge

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here at SumProduct we write many articles for many magazines and our authoring contracts have been revised recently to ensure Artificial
Intelligence hasn’t taken over our duties. We can assure everyone they have not.

But it did get us thinking: what if we did let AI loose and write a regular article for the newsletter?

This month, it looks like we feed its infatuation with VLOOKUP…

This Month’s Prompt: Which function in Excel is most frequently misunderstood? Why?

Excel is a powerful tool used by millions of people around the world for various purposes, from simple calculations to complex data analysis. Among
its myriad of functions, there is one that stands out both for its utility and for the confusion it often causes: the VLOOKUP function. Despite its
potential to simplify data retrieval from large datasets, VLOOKUP is frequently misunderstood and misused. Here, we will explore why VLOOKUP is
misunderstood, how it works, common pitfalls and best practices for its effective use (don’t! – Ed.).

WHAT IS VLOOKUP?

VLOOKUP, short for "Vertical Lookup," is a function that allows users to search for a value in the first column of a table array and return a value in
the same row from a specified column. It is particularly useful in large datasets where manually searching for data would be time-consuming and
prone to errors.

SYNTAX OF VLOOKUP

To understand why VLOOKUP is often misunderstood, it is essential to start with its syntax. The VLOOKUP function has the following format:

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

where it has the following arguments:

	 •	 lookup_value: this is the value you want to search for in the first column of the table array

	 •	 table_array: the range of cells that contains the data you want to search through
	 •	 col_index_num: the column number in the table array from which to retrieve the value. The first column of the table array is one [1]

	 •	 [range_lookup]: an optional argument that specifies whether you want an exact match (FALSE) or an approximate match (TRUE). The 	
		 default is TRUE.

COMMON MISUNDERSTANDINGS AND PITFALLS

Despite its straightforward appearance, VLOOKUP is frequently misused. Here are some common reasons why.

Misconception 1: Incorrect Range for Table Array

One of the most common mistakes is specifying an incorrect range for the table array. Users often forget that the lookup_value must be in the first
column of the table array. If the lookup_value is not in the first column, VLOOKUP will return an error or incorrect data.

Over to AI

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Misconception 2: Wrong Column Index Number

Another frequent error is using the wrong column index number. Users sometimes count columns incorrectly or use a static number when the table
array has been adjusted, leading to incorrect results.

Misconception 3: Ignoring the Range Lookup Argument

The range_lookup argument is often misunderstood or ignored. By default, VLOOKUP uses an approximate match, which can lead to unexpected
results if an exact match is needed. Specifying FALSE for the range_lookup argument ensures that only exact matches are returned.

Misconception 4: Performance Issues with Large Datasets

VLOOKUP can be slow when dealing with large datasets because it scans each row sequentially until it finds a match. Users expecting faster
performance may be disappointed unless they optimise their data or consider alternative functions like INDEX and MATCH.

Misconception 5: Limitations of VLOOKUP

VLOOKUP has limitations that users might not be aware of. It can only search for values in the first column of the table array, and it cannot look
up data to the left of the lookup column. These limitations can be frustrating and may require users to rearrange their data or use alternative
functions.

BEST PRACTICES FOR USING VLOOKUP

Understanding how to use VLOOKUP correctly can significantly enhance its effectiveness. Here are some best practices to follow:

	 1.	 Ensure the Lookup Value is in the First Column.
		 Always double-check that your lookup value is in the first column of your table array. If necessary, rearrange your data to meet this 	
		 requirement

	 2.	 Use Absolute References.
		 When specifying your table array, use absolute references (e.g. A1:D10) to prevent errors when copying the formula to other cells

	 3.	 Specify the Range Lookup Argument.
		 Always define the range_lookup argument explicitly. Use FALSE for an exact match to avoid unexpected results

	 4.	 Optimise Your Data.
		 If working with large datasets, consider sorting your data by the lookup column and using approximate MATCH (TRUE) to improve 	
		 performance. Alternatively, consider using the INDEX and MATCH functions for more flexibility and efficiency

	 5.	 Understand When to Use Alternative Functions.
		 In cases where VLOOKUP's limitations are problematic, consider using other functions like INDEX and MATCH, which offer greater 	
		 flexibility and can overcome some of VLOOKUP’s constraints.

CONCLUSION

The VLOOKUP function in Excel is a powerful tool that can simplify data retrieval and enhance productivity. However, its frequent misuse stems
from misunderstandings of its syntax and limitations. By gaining a thorough understanding of how VLOOKUP works and following best practices,
users can harness its full potential and avoid common pitfalls. Whether for simple lookups or complex data analysis, mastering VLOOKUP is an
invaluable skill for any Excel user.

What do you think? Would you use VLOOKUP (you know our views if you are a regular reader!)? Send us your comments and ideas for questions
to contact@sumproduct.com.

If you’ve ever experienced an automatic ‘Flash Fill’ in Excel for Windows, you know it feels magical when it happens. You might be typing some values
in a new column next to your data, and Excel automatically fills in the rest of the values based on the first few examples that you’ve typed.

With Steve Kraynak joining the team, we thought we would exploit his
knowledge and recant all about Microsoft Excel for Mac. Each month,
we’ll cover a different topic to help you understand how Excel for Mac is
different than Excel for Windows. This month, we show you an important

tip about ‘Flash Fill’. On Mac, it’s one of those things that you need to
know. If you know, you know. If you don’t know, then ‘Flash Fill’ won’t
help you.

Excel for Mac

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
mailto:contact%40sumproduct.com?subject=

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Flash Fill Works on Mac, But it’s Not Automatic

The End Result is the Same

Many features in Excel are powerful, but you can’t take advantage of
them unless you know about them. What makes ‘Flash Fill’ a bit different,
at least on Windows, is that you don’t need to know about it. You can
just enter some data, and it shows itself when it can help. It does come
at a slight cost, though. ‘Flash Fill’ is always watching what you’re typing

and trying to detect if there’s a pattern that it can follow. In most cases,
there’s no noticeable impact on performance, so you won’t notice any
slowdown in Excel. However, concern about performance is probably
the reason why it’s not automatic on Mac.

Despite the differences mentioned above, the values that result should be the same as you would get in Excel for Windows. The differences are
just that it’s not automatic, and it doesn’t show a preview of the data (as shown below), which is where the suggested values appear in a light grey.
It just fills in the values.

Even so, it is very simple to use:

	 •	 Type a value in a cell next to existing data in your sheet. In the example shown below, we typed “blue” in cell B2

	 •	 Then press the ‘Flash Fill’ button on the Data tab of the Ribbon or press CTRL + E on your keyboard

	 •	 ‘Flash Fill’ will then fill in all the other rows to follow along with the example you typed. You can then proceed with making corrections or 	
	 	 accepting the suggestions

	 •	 You’ll see a pop-up button near the top of the list of cells where ‘Flash Fill’ did its work. You can press the button or you may select all the 	
	 	 cells that were changed by ‘Flash Fill’:

If some cells were left blank, you can select those from the menu, making it easy to find them. Then you can type a value that you want for those
cells that Flash Fill wasn’t able to fill for you.

You should note that another difference between Windows and Mac is that on Mac there is no keyboard shortcut to open the ‘Flash Fill’ options
menu that appears. You can only open it on Mac by clicking it with your mouse. On Windows, you can simply press the CTRL key on your keyboard.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We’ll continue next month…

We thought we’d run an elementary series going through the rudiments of Visual Basic for Applications (VBA) as a springboard for newer users.
This month, we stay on the case of Case.

A client has asked us about the overall efficiency of the Select Case statement, and whether it was a problem that we might have dozens of different
Case statements. In particular, the concern was that if the macro found the answer in the very first statement, that it would then waste time
checking against every other Case in the list. Given that this was being run once per row, for thousands of rows, they felt justifiably concerned!

Well, there’s an easy way to test this. We can take the numeric example we showed last month and amend it slightly so that two cases overlap:

In this instance, if we provide a margin value of 0.8, it should trigger the
first Case statement. Then, if we don’t get a second message box, then
we can confirm it stops after hitting the first Case statement. Otherwise,
if we get the second message box, then we will know that it jumps to End
Select once it’s completed a Case successfully.

As it turns out, it does jump to the end. Therefore, even if you have
dozens of Case statements, if the first one is true, it will ignore the rest
and go straight to the end, saving a bit of processing time from checking
the other Cases.

More next time.

Visual Basics

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

It’s time to chart our progress with an introductory series into the world of creating charts and dashboards in Excel. This month, we will talk about
how to create a dynamic legend.

We recently wrote a small series about building a conditional Do(ugh)nut chart where the colour of chart series representing the group’s rating
changes depending on their rating. Here, we complete the chart with the data labels.

The data labels do not look nice at all times. For example, when we change the group rating, they look as follows:

Charts and Dashboards

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, the colour has changed, without explanation. Therefore, we want to create a legend to fix this issue. In this case, the legend should be dynamic
so that the colour on the legend should change following the changes in the data.

First, we will remove the data labels from the chart and create a range of cells for the legend. In our example, this will be in cells D65:F69 (below):

Next, we will apply the colour conditional formatting to cell D65 so that it will display the colour based on the rating by navigating to the Home tab
on the Ribbon and choosing Conditional Formatting -> New Rules… as shown below:

We will need to repeat this process five times, with the value being increased to two [2], then three [3], then four [4], and finally five [5], viz.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Then, we want the number in cell D65 to be invisible so that only the colour is displayed. To do this, right-click on the cell D65 and select ‘Format Cell…’
or use the CTRL + 1 keys to open the ‘Format Cells’ dialog. Under the Number -> Custom, enter ‘;;;’ in the Type box to make the number invisible.

We just need to copy the formatting of cell D65 to cell D67 and cell D69. We are now having a range of cells which looks like a legend which colour
depends on the group rating.

To get the legend ‘image’ to the chart, we will use the Camera tool (from last month’s newsletter on how to get the tool and how to use it when
creating charts and dashboards. We will take a snapshot of the legend by selecting the range of cells and click on the Camera icon on the Quick
Access Toolbar.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Then, click somewhere on the sheet to paste the image.

To remove the image border, right-click on the image and choose ‘Format Picture…’. In the ‘Format Picture’ panel, let Fill be ‘No fill’ and Line be ‘No
line’. Then, we just need to drag the legend image onto the Donut chart.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Now that the group ratings are changed, the colours of the chart series and the legend are also updated accordingly.

More next time.

We continue our series on the Excel COM add-in, Power Pivot. This month, here’s something we should have done EARLIER…

We will need to explain several concepts before covering the EARLIER function. The first concept we are going to cover is the idea of Row Context.

In DAX, the Row Context is a term that means: “a row by row evaluation”. Essentially, it means that the formula is executed one row at a time.
This may return with different results on each row of a table.

Let’s take a look at an example. We are going to use the following data set (the picture below is not exhaustive):

Power Pivot Principles

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

After loading this data into our data model, we can create the following calculated column:

=SaleTbl[Price]*SaleTbl[Amount Sold]

This would give us the total Sale Amount, since we are multiplying the price per product with the amount sold. This single DAX formula is calculating
a different sale amounts for each row. This is because the Sale Amount is being multiplied individually for each product one row at a time.

Simple? Now, we can look at Nested Row Contexts. This means that there are multiple Row Contexts, or multiple row by row calculations in each
row. Perhaps this is better illustrated in the following example. Using the same dataset as before we can create the calculated column:

=RANKX(SaleTbl,[Sale Amount],,ASC)

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The RANKX formula has two [2] nested row contexts. It has two [2] steps:

	 1.	 It works out the total Sale Amount for each Product ID. This is the outer row context

	 2.	 It ranks the Product ID on the current row verses the entire table based on the total Sale Amount. This is the inner row context.

Now that we are all on the same page regarding inner and outer row contexts, we can move on to the EARLIER function.

The EARLIER function uses the following syntax to operate:

EARLIER (column, [number])

where:

	 •	 the column parameter must refer to a column that has numeric values or dates

	 •	 the number parameter is optional, it delineates the number of row contexts to step out of before evaluation. If omitted, it will default to 	
		 one [1].

Let’s recreate the Rank Sales column, this time with the EARLIER function.

=
COUNTROWS(

FILTER(SaleTbl,

	 [Sale Amount] > EARLIER([Sale Amount])

)

) + 1

This formula has two [2] nested row contexts:

	 1.	 the first one (inner row context) is in the FILTER function where each row of the table is evaluated based on the condition

	 2.	 the second (outer row context) is the Sale Amount calculation (Price * Amount Sold).

Another way to think about it is that this formula has two loops: an inner and outer loop. The inner loop is where the FILTER function has to
evaluate all of the Sale Amounts in the table. The outer loop is when the EARLIER function instructs the program disregard the inner loop and
evaluate the outer loop, defined as [Sale Amount], which is the current row’s Price * Amount Sold.

To further step it out, the formula evaluates as follows:

	 •	 the COUNTROWS function requires a table input
	 •	 the FILTER returns with a table, based upon a condition
			 ○	 the FILTER function begins by evaluating the first row of the SaleTbl, where it evaluates all the Sale Amount values for each row, 	
				 then returns with a table of all the Sale Amount values that are greater than EARLIER([Sale Amount])

	 •	 the EARLIER function instructs the formula to disregard the current row context in the FILTER function jump one level up to the ‘outer 	
		 loop’ where the EARLIER function will evaluate to ‘0.00’ on the first row
			 ○	 the outer loop of this evaluation is the Sale Amount calculation, which is Price * Amount Sold.

The FILTER function can now return with a table where all of the rows have a value greater than $0.00. The COUNTROWS function then counts all
of the rows in that table, which is 49. This is why we had to add a “+1” at the end of the formula to return with 50. This loop is repeated for each of
the remaining rows and the ranking column is calculated.

We only had two nested row contexts in this formula, therefore we omitted the second parameter ([number]) in this formula. If we had more levels
of nested row contexts (say three) and wanted the EARLIER function to evaluate at the first level, we would enter ‘2’ as the [number].

That brings us to an end to this, er, simple article.

That’s it for this month; more next time.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Each month we’ll reproduce one of our articles on Power Query (Excel 2010 and 2013) / Get & Transform (Office 365, Excel 2016 and 2019) from
www.sumproduct.com/blog. If you wish to read more in the meantime, simply check out our Blog section each Wednesday. This month, we see why
not all ‘Merge Columns’ options are born equal.

There are currently some problems that can occur when merging columns. To demonstrate, let’s use the following subset of the regularly-used tent
data:

Let’s take a look at an example. We are going to use the following data set (the picture below is not exhaustive):

Let’s create a new column which will contain all of the dimension data.

In the ‘Transform’ data tab, we can choose to merge columns. First, we must select them, which we can do by holding down the CTRL key as we
click on them.

Power Query Pointers

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
http://www.sumproduct.com/blog

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We have selected all the columns containing dimensional data, then we will choose to merge:

Let’s choose to separate the data by commas, and we will call the new column Dimensions.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

There are several problems here:

	 1.	 The original columns have disappeared

	 2.	 The data is not in the order we would have expected

	 3.	 There are extra commas.

The first problem could be resolved by copying my columns before we merge them:

In the ‘Add Column’ tab, we may create a duplicate of the selected column. We have to do this one column at a time, but having created the
duplicates we can select them instead of the original columns.

Surprisingly, there is an easier way: we may merge columns from the ‘Add Column’ tab instead:

We can merge columns here too, but the process behaves slightly differently.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This part looks the same; we can pick the separator and the name of the new column.

However, this time we get to keep our original columns. Confusing, but useful when we know that ‘Merge Columns’ on the ‘Transform’ tab deletes
the original columns, whereas ‘Merge Columns’ from the ‘Add Column’ tab keeps the originals.

They are still in the wrong order though, and now we can see the original columns, we may work out the order. The merge is constructed in the
order in which we select our columns. We selected colour first and worked backwards, so our merge does too. We may rectify this by selecting our
columns in the order we want them to merge.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Having selected Length, we can select our remaining columns in the right order by holding down the SHIFT key and then selecting colour. This is
quicker and will ensure the order is right.

Having created our merge (from the ‘Add Column’ tab), we check the order again.

The order is correct, and looking more closely, our last problem (extra commas) has also been resolved! This is because there are more differences
to the way the ‘Merge Columns’ option on the ‘Add Column’ tab works compared to the ‘Transform’ tab. To show the difference in the results, we
will merge the columns from the ‘Transform’ tab:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We give the column a different name so we may see what is happening.

The ‘Merge Column’ from the ‘Transform’ tab does not cope with the null values, but the ‘Merge Column’ from the ‘Add Column’ tab does!

The answer to this discrepancy is in the Advanced Editor, where we can see what each ‘Merge Columns’ has done in M. First of all, let’s consider the
‘Transform’ tab version:

#"Merged Columns" = Table.CombineColumns(#"Inserted Merged Column",{"Length", "width", "height", "volume", "temperature", "colour"},
Combiner.CombineTextByDelimiter(",", QuoteStyle.None),"Dimensions (from Transform)")

This version of the merge has created a new column using the M function Combiner.CombineTextByDelimiter. Clearly, this function does not cope
with null values.

The ‘Add Column’ tab version has used a different M function:

#"Inserted Merged Column" = Table.AddColumn(#"Changed Type", "Dimensions", each Text.Combine({[Length], [width], [height],
[volume],[temperature], [colour]}, ","), type text)

This time, the M function used is Text.Combine, which does cope with the null values.

This does leave the question of whether the ‘Add Column’ merge column feature will cope equally well with numerical columns…

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The answer is yes, the price is included too, and looking at the M code, we can see why:

= Table.AddColumn(#"Changed Type", "Details from Add Column", each Text.Combine({[Length], [width], [height], [volume], [temperature],
Text.From([Price], "en-GB"), [colour]}, ","), type text)

The price is converted to text so that it can be combined with the other columns.

In summary, if merging columns, it’s currently best to do so from the ‘Add Column’ tab. It keeps the original columns and copes with null values. This
is correct at the time of writing, but we wouldn’t be surprised to find that the ‘Transform’ tab is soon updated to use the same functionality for the
‘Merge Columns’ option. We still have to remember to add the columns in the order we want to merge them, but allowing that functionality means
that we don’t need to reorder my columns if we do need them to be merged in a different order.

Until next month.

Microsoft has announced that their Power BI team is taking a break (no stamina, we’re telling you!). They state that their planned updates will roll
out next month including the next Power BI Desktop release.

Take a well-earned rest, gang, and we will report their latest changes as usual in next month’s newsletter.

Power BI Updates

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This month introduces new features in Copilot in Excel that can transform data analysis, assist with conditional formatting, plus a new Excel chat
helper. RegEx functions are now rolling out to Windows and Mac users too.

The full list is as follows:

Excel for Windows, Mac and the web

	 •	 Copilot in Excel: transforming data analysis

	 •	 Conditional formatting with Copilot in Excel

	 •	 Copilot in Excel: Excel Chat Helper

Excel for Windows and Mac

	 •	 New Regular Expression (RegEx) functions

Excel for Mac

	 •	 Recent widgets for Word, Excel and PowerPoint (Insiders).

Let’s get started.

Copilot in Excel: transforming data analysis

Copilot in Excel has been Generally Available for a while now. However, additional features keep rolling out. Here are this month’s for Excel for
Windows, Mac and the web:

	 •	 Copilot in Excel with Python is now Generally Available in US (EN-US) for Windows

	 •	 you can create a table (Table?) specific to your needs with Copilot

	 •	 Copilot helps you pull in data from your organisation and search the web

	 •	 Copilot's enhanced text analysis capabilities provide new ways to reason over your data and derive insights.

Conditional formatting in Excel is a well-known, frequently used tool that
allows you to apply specific formatting to cells that meet certain criteria.
This can include changing the cell's background colour, font colour or adding
icons to highlight differences in data. By using conditional formatting, you
can help data to stand out and emphasise what’s important, applying your
rules automatically as your data changes and grows.

Using a formula to determine which cells to format is one of the most
versatile conditional formatting tools. However, it can be challenging to
set it up to do exactly what you want. You must get the formula and

syntax exactly right without having the tools and tips of the Formula
bar or seeing interim results in cells. With Copilot, you can simply use
language to describe exactly what you want to happen.

Microsoft provides the following example. Imagine a user knows
precisely how they wish to colour their data. They want to flag certain
info in different ways based on a payment status and a date. If they use
Copilot, they could ask, “Highlight rows in red when the date is this month
or earlier and the customer has not paid. Highlight rows in yellow when
the date is next month and the customer has not paid”.

Conditional formatting with Copilot in Excel

New Features for Excel

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In this example above, Copilot has understood the table of data, interpreted the prompt and responded with two conditional formatting for review
and application. You do not need to know the logical order, need formulae or exact syntax to get this result.

You can also ask Copilot to do other types of highlighting, e.g.

	 •	 make values in ‘Column Name’ greater than ‘number’ have white text on a black background

	 •	 highlight cells in light blue for ‘Column Name’ that contain ‘specific text’

	 •	 highlight the top 10% of values in ‘Column Name’ using bold font

	 •	 Apply a Red and Green colour scale to the values in ‘Column Name’.

When you have applied any conditional formatting rules using Copilot, you can manage and edit existing rules by choosing Conditional Formatting
-> Manage Rules from the toolbar or Ribbon.

Conditional formatting in Excel is a versatile tool that can help you analyse and present your data more effectively. By exploring the various
capabilities of conditional formatting in combination with Copilot you can unlock the full potential of this feature and make your spreadsheets more
informative and visually engaging.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

If you are new to Excel, no matter how user friendly it purports to be, it can be challenging, especially when consolidating data from various sources
like emails and meetings, or when you're unfamiliar with the required analysis. Remembering seldom used formulae / functions or finding the right
tool for a simple task can be frustrating, often leading you to search for tutorials online.

Think of Copilot as your Excel encyclopedia. If you need help or want to learn something new in Excel, just ask Copilot! Erm… isn’t that Clippy?

Jokes aside, imagine we have some fictional employee data for a chain of stores. Let’s say we have two [2] tables of employee information: one for
region A, and one for region B. Some employees work for stores in multiple regions. Imagine we have asked Copilot how to find the employees that
don’t work in both regions.

Imagine we did not understand Copilot’s answer. Therefore, we may ask Copilot to simplify the concepts for better comprehension. A prompt might be:

I have two datasets and one of them has duplicate rows of the other. How do I find the unique rows in the second dataset? Explain it to me like I'm
five [5] / the Managing Director of SumProduct.

NOOO!!

Copilot in Excel: Excel Chat Helper

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We may also use Copilot to assist with formulaic issues we don’t know how to fix or edit an existing formula to do something different, e.g.

	 •	 Can you suggest a fix for the #N/A error in this formula =XLOOKUP([@[Store ID]], Stores[Store ID], Stores[Manager Name])?
	 •	 I would prefer it if the formula would show an empty cell instead of "Not Found". Can you help me modify it?

Copilot may be a simple resource for mastering formulae when you are starting out, simplifying complex tasks, and enhancing your productivity.

Regular expressions, or ‘RegEx’ / ‘regex’ are sequences of characters
that define search patterns, commonly used for string searching and
text parsing. They are incredibly versatile and are often used to check
if a string contains a certain pattern, extract substrings that match the
pattern or replace substrings that match the pattern.

The new regex functions being rolled out to Excel for Windows and Mac
are:

	 •	 REGEXTEST: checks whether any part of supplied text matches 	
		 a regex pattern

	 •	 REGEXEXTRACT: extracts one or more parts of supplied text 	
		 that match a regex pattern

	 •	 REGEXREPLACE: searches for a regex pattern within supplied 	
		 text and replaces it with different text.

We have explained these functions in previous newsletters, but for those
who missed it and / or for completion, we reproduce the article below.

Microsoft has stated that the version of Regex coming to Excel uses a
“flavor” (sic) called PCRE2 (PHP>=7.3) for those that need to know the
underlying technical stuff.

Clearly, we need to learn a little about “regular expressions” before
continuing. Alternatively referred to “rational expressions” upon
occasion, a regular expression is a sequence of characters that specifies
what is known as a “match pattern” in text. You have most likely used
this functionality in Excel already, with features such as “Find and Relace”
or by using the FIND or SEARCH functions in Excel. The purpose of these
three [3] new functions (presumably, this is just a start!) is to help you
match, locate and manage text (strings) in Excel.

The text is obvious but understanding patterns requires you to learn
the syntax for regular expressions. Here is a crash course table, which
summarises some – but not all – of the main elements, usually referred
to as “tokens”.

New Regular Expression (RegEx) functions

Token Meaning

\ This converts special characters (metacharacters) to literal characters, and also allows the literal
matching of the regex delimiter in use, e.g. ‘/’

. Matches any character other than newline

^ Matches the start of string without consuming any characters. If multiline mode is used, this will
also match immediately after a newline character

$ Matches the end of string without consuming any characters. If multiline mode is used, this will
also match immediately before a newline character

a? Matches zero [0] or one [1] of a. This matches an ‘a’ character or nothing

a* Matches zero [0] or more of a. This matches zero or consecutive ‘a’ characters

a+ Matches one [1] or more of a. This matches consecutive ‘a’ characters

a{4} Matches exactly four [4] instances of ‘a’

a{4,} Matches four [4] or more instances of ‘a’

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Token Meaning

a{4,6} Matches between four [4] and six [6] instances of ‘a’

\A Matches the start of a string only. Unlike ^, this is not affected by multiline mode

\Z Matches the end of a string only. Unlike $, this is not affected by multiline mode

\z Matches the absolute end of a string only. Unlike $, this is not affected by multiline mode and in
contrast to \Z, this will not match before a trailing newline at the end of a string

\b Matches a word boundary. It matches without consuming any characters, immediately between a
character matched by \w and a character not matched by \w. It cannot be used to separate non-
words from words

\B Matches a non-word boundary. It matches without consuming any characters, at the position
between two characters matched by \w or \W

i A case insensitive match is performed

x Ignore whitespace / verbose. This flag instructs the engine to ignore all whitespace and allow for
comments in the regex, also known as verbose. Comments are indicated by starting with the #
character and then escaping with \

xx Ignore all whitespace / verbose. Similar to x, but whitespace is also ignored inside of character
classes

s Known as single line, this enables the dot (.) metacharacter to also match newlines, thus treating
the whole string as a single line input

\n Matches a newline character

\N Matches anything other than a newline character

\r Matches a carriage return, Unicode character U+2185

\R Careful! Matches any Unicode newline sequence

\t Matches a tab character (typically, tab stops happen every eight [8] characters)

\0 [zero] Matches a null character, Unicode character U+2400

\d Matches any decimal / digit. Equivalent to [0-9]

\D Matches anything other than a decimal / digit

\s Matches any whitespace character (space, tab or newline)

\S Matches any non-whitespace character (anything other space, tab or newline)

\w Matches any word character (any letter, digit or underscore). Equivalent to [a-zA-Z0-9_]

\W Matches any non-word character (anything other than a letter, digit or underscore). Equivalent to
[^a-zA-Z0-9_]

[abc] Matches an ‘a’, ‘b’ or ‘c’ character

[^abc] Matches any character except ‘a’, ‘b’ or ‘c’

a|b Alternate match: matches what is before or after |, in this case ‘a’ or ‘b’

[a-z] Matches any characters between a and z inclusive

[^a-z] Matches any characters, except those in the range a to z inclusive

[a-zA-Z] Matches any characters between a to z or A to Z inclusive

[[:alnum:]] Double square brackets are required here. Matches letters and digits. This is equivalent to
[A-Za-z0-9]

[[:alpha:]] Matches letters. Equivalent to [a-zA-Z]

[[:ascii:]] Matches any character in the valid ASCII range (any basic Latin character). ASCII codes 0 to 127
inclusive

[[:blank:]] Matches spaces and tabs (but not newlines). Equivalent to [\t]

[[:cntrl:]] Matches characters that are often used to control text presentation, including newlines, null
characters, tabs and the escape character

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Token Meaning

[[:digit:]] Matches decimal / digits. Equivalent to [0-9] or \d

[[:graph:]] Matches visible characters (not space: printable, non-whitespace, non-control characters only)

[[:lower:]] Matches lowercase letters. Equivalent to [a-z]

[[:print:]] Matches printable characters, part of the basic Latin set, such as letters and spaces, but not
including control characters

[[:punct:]] Matches visible punctuation characters that are not whitespace, letters or numbers

[[:space:]] Matches whitespace characters. Equivalent to \s

[[:upper:]] Matches uppercase letters. Equivalent to [A-Z]

[[:word:]] Matches word characters (letters, numbers and underscores). Equivalent to \w or [a-zA-Z0-9_]

[[:<:]] Matches the start of word

[[:>:]] Matches the end of word

(?:…) Match everything enclosed. For example, repeating 1-3 digits and a period 3 times can be
identified as follows:

/(?:\d{1,3}\.){3}\d{1,3}/

(…} Capture everything enclosed

Now we are all experts in regex, let’s go through the three new functions being rolled out.

REGEXEXTRACT

This function is used extract one or more strings that match a specified pattern from the text being analysed. You may extract the first match, all
matches or capturing groups from the first match. Its syntax is as follows:

REGEXEXTRACT(text, pattern, [return_mode], [ignore_case])

It has the following three arguments:

	 •	 text: this is required, and represents the text you are searching within
	 •	 pattern: this is also required. This is the regular expression to be applied
	 •	 return_mode: the first of two optional arguments, this specifies which matches to return. It has three [3] alternatives:

		 Capturing groups are part of a regular expression (“regex”) pattern surrounded by parentheses “(…)”. They allow you to return separate 	
		 parts of a single match individually

	 •	 ignore_case: the final (optional) argument. This determines whether the match should be case sensitive. It has the following two [2] 	
		 options:

This function always returns text values. You may convert these results back to numerical values using the VALUE function.

Consider the following examples:

Return Mode Description

0 First match (default)

1 All matches

2 Capture groups of first match

Ignore Case Description

0 Case sensitive match (default)

1 Case insensitive match

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

REGEXREPLACE

The REGEXREPLACE function replaces strings within the provided text that matches the pattern with replacement. The syntax of the REGEXEXTRACT
function is:

REGEXREPLACE(text, pattern, replacement, [occurrence], [case_sensitivity])

where:

	 •	 text: this is required, and represents the text or the reference to a cell containing the text you wish to replace strings within
	 •	 pattern: this is also required. This is the regular expression (“regex”) that describes the pattern you wish to replace
	 •	 replacement: another required argument, this is the text you wish to replace instances of pattern
	 •	 occurrence: the first of two optional arguments, this specifies which instance of the pattern you wish to replace. By default, occurrence is 	
		 zero [0], which will replace all instances. It should be noted that a negative number replaces that instance, searching from the end 	
		 instead

	 •	 case_sensitivity: the final (optional) argument. This determines whether the match should be case sensitive. It has the following two [2] 	
		 options:

Case Sensitivity Description

0 Case sensitive match (default)

1 Case insensitive match

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This function always returns text values. You may convert these results back to numerical values using the VALUE function.

Consider the following examples:

REGEXTEST

The REGEXTEST function allows you to check whether any part of supplied text matches a regular expression (“regex”). It will return TRUE if there is
a match and FALSE otherwise. The syntax of the REGEXTEST function is:

REGEXTEST(text, pattern, [case_sensitivity])

where:

	 •	 text: this is required, and represents the text or the reference to a cell containing the text you wish to match against

	 •	 pattern: this is also required. This is the regular expression (“regex”) that you wish to match

	 •	 case_sensitivity: the final (optional) argument. This determines whether the match should be case sensitive. It has the following two [2] 	
		 options:

This function always returns text values. You may convert these results back to numerical values using the VALUE function.

Consider the following examples:

Case Sensitivity Description

0 Case sensitive match (default)

1 Case insensitive match

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Recent widgets for Word, Excel and PowerPoint (Insiders)

The Recent widgets added to iOS have made their way to Excel for Mac.

You may now add Recent widgets for Word, Excel and PowerPoint directly to your Mac desktop. The widgets allow you to both view and open your
most recently accessed files from the desktop.

On your Mac, right-click your desktop and select the 'Edit Widgets' command:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Then, select the app widget you want from the resulting list:

Select the size of widget you want and then hover over it and select the green + button in the top left corner.

To access one of your recent files from your desktop, simply click the File card:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The Recent widget offers four [4] sizes to choose from, ranging from small to extra-large. If you would like to open the application's home page
instead of a recent file, click anywhere on the widget outside of the File cards.

It should be noted that this feature is rolling out to Current Channel (Preview) users of Excel for Mac running Version 16.91 (Build 24110320) or later.

Until next month.

The older I get the more invaluable OFFSET becomes. The syntax for OFFSET is as follows:

OFFSET(reference, rows, columns, [height], [width]).

The arguments in square brackets (height and width) may be omitted from the function. The default values are the same dimensions as the original
reference.

In its most basic form, OFFSET(ref, x, y) will select a reference x rows down (-x would be x rows up) and y columns to the right (-y would be y columns
to the left) of the reference ref. For example, consider the following grid:

OFFSET(A1,2,3) would take us two rows down and three columns across to cell D3. Therefore, OFFSET(A1,2,3) = 16, viz.

OFFSET(D4,-1,-2) would take us one row up and two rows to the left to cell B3. Therefore, OFFSET(D4,-1,-2) = 14, viz.

We can use these mechanics to construct a very simple scenario table:

The A to Z of Excel Functions: OFFSET

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Essentially, the assumptions used in this illustration are linked from cells
J14:J20 (in yellow). These values are drawn from the scenario table to
the right of the highlighted yellow range (e.g. cells L14:L20 constitute
Scenario 1, cells M14:M20 constitute Scenario 2).

The Scenario Selector is located in cell J11. Using OFFSET scenarios
may be selected at will. For example, the formula in cell J14 is simply
OFFSET(K14,,J11), that is, start at cell K14 and displace zero rows
down and the value in J11 columns across. In the image above, the
formula locates the cell one column to the right, which is Scenario 1.

The advantage of OFFSET over other functions such as INDEX, CHOOSE
and LOOKUP functions is that the range of data can be added to. Whilst
the other functions require a specified range whereas we can keep

adding scenarios without changing the formula / making the model
inefficient.

Furthermore, OFFSET can be used for other practical uses in Excel, taking
advantage of the height and width arguments. Consider the OFFSET
example from earlier. If we extend the formula to OFFSET(D4,-1,-2,-2,3),
it would again take us to cell B3 but then we would select a range based
on the height and width parameters. The height would be two rows
going up the sheet, with row 14 as the base (i.e. rows 13 and 14), and the
width would be three columns going from left to right, with column B as
the base (i.e. columns B, C and D).

Hence OFFSET(D4,-1,-2,-2,3) would select the range B2:D3, viz.

Note that OFFSET(D4,-1,-2,-2,3) equals #VALUE! in legacy Excel, since this version of Excel cannot display a matrix in one cell (Excel 365 can as
it supports dynamic arrays), but it does recognise it. However, if after typing in OFFSET(D4,-1,-2,-2,3) we press CTRL + SHIFT + ENTER in older
versions, we turn the formula into an array formula:

{OFFSET(D4,-1,-2,-2,3)}

(do not type the braces in, they will appear automatically as part of the Excel syntax). This gives a value of eight [8], which is the value in the top
left-hand corner of the matrix, but Excel is storing more than that. This can be seen as follows:

	 •	 SUM(OFFSET(D4,-1,-2,-2,3)) = 72 (i.e. SUM(B2:D3))

	 •	 AVERAGE(OFFSET(D4,-1,-2,-2,3)) = 12 (i.e. AVERAGE(B2:D3)).

Indeed, you may construct a simple depreciation calculation or transpose references using OFFSET’s height and width functionalities. But more on
that later…

There are a couple of problems with OFFSET:

	 •	 values returned by an OFFSET function confuse Excel. Only the original reference is recognised as a precedent reference to the formula 	
		 by Excel’s auditing tools.

The result returned is most likely to come from another cell which will not be highlighted by this technique. If you think about it, this actually makes
sense as potentially all of the cells on a worksheet are potential precedents.

To take account of this, I suggest you give the reference a range name. Range names are discussed in detail later in this book, but for now to name
a cell, click on the cell and then type the desired name in the ‘Name box’ in Excel:

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 	 This range name should start with BC_. This prefix stands for “Base Cell” and makes it easier to sort / locate range names later. When users or 	
	 	 model auditors alike inspect a formula with a Reference starting with BC_ for Base Cell (e.g. BC_Example_Reference), this can alert them to the 	
	 	 fact that the model may be using cells in the region of this Reference that do not appear to have any dependents.

	 •	 The other issue is that OFFSET is what is known as a volatile function. A volatile function is one that causes recalculation of the formula in 	
	 	 the cell where it resides every time Excel recalculates. This can really slow down your model if there are too many OFFSET functions, for 	
	 	 example.

As stated above, a volatile function is one that causes recalculation of
the formula in the cell where it resides every time Excel recalculates.
This occurs regardless of whether precedent cells / calculations have
changed, or whether the formula also contains non-volatile functions.
One test to check whether your workbook is volatile is close a file after
saving and see if Excel prompts you to save it a second time (this is an
indicative test only). This can really slow down your model if there are
too many OFFSET functions, for example.

Just because a function is volatile in one version of Excel does not mean
it is volatile in all versions. Perhaps the best example of this is INDEX,
which was volatile prior to Excel 97. Microsoft still states this function is
volatile, but this does not appear to be the case except when used as the
second part of a range reference, for example A1:INDEX(A2:A$10,4),
will also cause the reference to be flagged as “dirty” (i.e. needs to be
recalculated) when the workbook is opened only.

Another common ‘semi-volatile’ function is SUMIF, which has been so
since Excel 2002. This function becomes volatile whenever the size of the
first range argument is not the same as the second (sum_range) argument,
e.g. SUMIF(A1:A4,1,B1) is volatile whereas SUMIF(A1:A4,1,B1:B4) is not.

IF and CHOOSE do not calculate all arguments, aabut iaaaaf any of
the arguments are volatile – regardless of whether they are used –
the formula is deemed to be volatile. Therefore, IF(1>0,1,RAND()) is
always volatile, even though the value_if_false argument will never be
calculated. It is not quite as simple as this though. If the formula in cell
A1 is =NOW() then this cell will be volatile, but IF(1>0,1,A1) will not be.

In essence, direct references or dependents of volatile functions will
always be recalculated, whereas indirect ones will only recalculate when
activated or in certain other functions that always calculate all arguments
such as AND and our next version OR…

Aside: Volatile Functions

The OR function is similar to AND but only requires one condition to
be TRUE. Similar to AND, the OR function may be used to expand the
usefulness of other functions that perform logical tests. For example,
the IF function performs a logical test and then returns one value if the

test evaluates to TRUE and another value if the test evaluates to FALSE.
By using the OR function as the logical_test argument of the IF function,
you can test many different conditions instead of just one.

For example, imagine you are in London on a Tuesday. Consider the expression

=OR(condition1, condition2, condition3)

where:

	 •	 condition1 is the condition, “today is Tuesday”
	 •	 condition2 is the condition, “you are awake” and
	 •	 condition3 is the condition, “the Earth is flat”.

The A to Z of Excel Functions: OR

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This would clearly be TRUE as you should be awake if you are reading this (that is, condition2 holds).

The syntax for OR is as follows:

OR(logical1, [logical2], …)

where:

	 •	 logical1: the first condition that you want to test that can evaluate to either TRUE or FALSE
	 •	 logical2: additional conditions that you want to test that can evaluate to either TRUE or FALSE, up to a maximum of 255 conditions. 	
		 logical2 is optional and is not needed in the syntax.

It should be noted that:

	 •	 the arguments must evaluate to logical values, such as TRUE or FALSE, or the arguments must be arrays or references that contain logical 	
		 values

	 •	 if an array or reference argument contains text or empty cells, those values are ignored

	 •	 if the specified range contains no logical values, the OR function returns the #VALUE! error value.

In summary, OR works as follows:

More Excel Functions next month.

Earlier in this newsletter, we asked you to imagine you had a Table named Data in Excel, containing a list of names under the column Name and
corresponding numerical data under the column Grade as follows:

Beat the Boredom Suggested Solution

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Crafting a Data Range with XLOOKUP and Colon

We initiate our formula with the XLOOKUP function, deploying it twice to accurately retrieve the grades corresponding to Name_1 and Name_2.

=XLOOKUP(Name_1,Data[Name],Data[Grade])

=XLOOKUP(Name_2,Data[Name],Data[Grade])

This will return us the respective grades for Name_1 and Name_2:

The real transformation occurs when we introduce a colon ‘:’ between these two [2] XLOOKUP functions. This action forms a dynamic array that
spans from the grade of Name_1 to that of Name_2.

=XLOOKUP(Name_1,Data[Name],Data[Grade]):XLOOKUP(Name_2,Data[Name],Data[Grade])

An intriguing aspect of this approach is its adaptability. Even if the names selected from the dropdown are not in sequential order, the formula
dynamically adjusts, ensuring the correct range is captured between the two [2] individuals:

Your task was to write a single Excel formula that summed the Grade data between two [2] names exclusively, which we referred to as Name_1 (Cell
G28) and Name_2 (Cell G29). These names were inputs that could be changed, and the sum was to dynamically update to reflect the range of data
between these two [2] names in the Data table. You could download the original question file here.

As always, there were some requirements:

	 •	 the formula needs to be within just one [1] column (no “helper” cells)

	 •	 the solution must work even if the order of Name_1 and Name_2 are swapped in the list
	 •	 the formula should be dynamic so that they should update when a new entry was added.

Suggested Solution for Modern Excel Users (Excel 365 and Later Versions)

The steps are detailed below.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
https://www.sumproduct.com/thought/xlookup-and-xmatch-two-new-x-men-for-excel
https://www.sumproduct.com/thought/xlookup-and-xmatch-two-new-x-men-for-excel
http://here

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Refining the Range with DROP

At this stage, while we could directly sum the array and then subtract the two [2] values of the lookup, we opt for a more refined approach by
incorporating the DROP function. This function is instrumental in sculpting our dynamic range further before performing the summation.

We can use:

=DROP(Range,1)

and

=DROP(Range,-1)

to meticulously remove the first and last entries in our range, the grades directly associated with Name_1 and Name_2.

Let’s combine all of that in this formula:

=DROP(DROP(Range,1),-1)

This formula elegantly encapsulates the operation of removing first and last data. When we substitute Range with our earlier XLOOKUP array, we
attain a perfectly tailored range for our summation:

=DROP(DROP(XLOOKUP(Name_1,Data[Name],Data[Grade]):XLOOKUP(Name_2,Data[Name],Data[Grade]),1),-1)

SUM and Error Trapping

The penultimate step here is to SUM, hence we quickly add the SUM function here:

=SUM(DROP(DROP(XLOOKUP(Name_1,Data[Name],Data[Grade]):XLOOKUP(Name_2,Data[Name],Data[Grade]),1),-1))

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-drop-function
https://www.sumproduct.com/thought/xlookup-and-xmatch-two-new-x-men-for-excel

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

However, we must consider edge cases, such as the non-selection of names or the selection of adjacent names, which could lead to errors in our
formula:

To address this, we wrap our summation formula within an IFERROR statement.

=IFERROR(SUM(DROP(DROP(XLOOKUP(Name_1,Data[Name],Data[Grade]):XLOOKUP(Name_2,Data[Name],Data[Grade]),1),-1)),0)

This formula not only performs the summation but also ensures that in the face of any discrepancies, our formula robustly returns a zero [0] instead
of an error.

Through this meticulous process, we ensure that our solution remains resilient, dynamic and accurate, adeptly managing the data between the
specified names and gracefully managing any potential anomalies.

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-iferror-function

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Making it Exclusive

To exclusively select the data between Name_1 and Name_2, we introduce the MAX and MIN functions. These functions are employed to determine
the endpoints of our data range:

=MAX(MATCH(Name_1,Data[Name],0),MATCH(Name_2,Data[Name],0))

This formula is used to find the last position in the data range.

=MIN(MATCH(Name_1,Data[Name],0),MATCH(Name_2,Data[Name],0))

Similarly, this above formula identifies the first position.

Subsequently, we modify our original INDEX:INDEX formula to replicate the effect of the DROP function used in the modern Excel solution:

=INDEX(Data[Grade],MIN(MATCH(Name_1,Data[Name],0),MATCH(Name_2,Data[Name],0))+1):
INDEX(Data[Grade],MAX(MATCH(Name_1,Data[Name],0),MATCH(Name_2,Data[Name],0))-1)

Addressing Specific Selection Scenarios

While effective, our method may not be perfect in all cases. For instance, if Name_1 and Name_2 are adjacent, the same name is selected twice or
the input cells are left empty, the formula might produce an incorrect range or result in an error.

Suggested Solution for Legacy Excel Users (Older Versions of Excel)

The steps are detailed below.

Using INDEX MATCH and Colon to Create a Data Range

In a manner akin to the approach for modern Excel users, we will use the INDEX MATCH partnership combined with a colon to define the data range.
This method uses

=INDEX(Data[Grade],MATCH(Name_1,Data[Name],0))

to locate the grade for Name_1. Similarly,

=INDEX(Data[Grade],MATCH(Name_2,Data[Name],0))

The above formula is employed to find the grade for Name_2.

Placing a colon between these two [2] formulae creates a range spanning from the grade of Name_1 to Name_2, viz.

=INDEX(Data[Grade],MATCH(Name_1,Data[Name],0)):INDEX(Data[Grade],MATCH(Name_2,Data[Name],0))

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-max-function
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-min-function
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-drop-function
https://www.sumproduct.com/thought/index-match

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

To address this, we implement the following formula:

=IFERROR(ABS(MATCH(Name_1,Data[Name],0)-MATCH(Name_2,Data[Name],0)),0)<=1

This formula utilises ABS and MATCH functions to detect if Name_1 and Name_2 are adjacent or identical. Additionally, the IFERROR function will
intercept any #N/A errors from the MATCH function not able to match any name and then converting them to zero [0]. The subsequent comparison
(<=1) checks if the range is suitable for summation. We encapsulate this logic within a comprehensive IF statement:

=IF(IFERROR(ABS(MATCH(Name_1,Data[Name],0)-MATCH(Name_2,Data[Name],0)),0)<=1, 0, SUM(INDEX(Data[Grade], MIN(MATCH(Name_1,Data
[Name],0),MATCH(Name_2,Data[Name],0))+1) : INDEX(Data[Grade], MAX(MATCH(Name_1,Data[Name],0),MATCH(Name_2,Data[Name],0))-1)))

By using this refined approach, we cater to the nuances of legacy Excel, ensuring an accurate and exclusive summation between the selected
names.

Word to the Wise

We appreciate there are many, many ways this could have been achieved. If you have come up with an alternative, radically different approach,
congratulations – that’s half the fun of Excel!

mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-match-function
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-iferror-function
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-match-function
https://www.sumproduct.com/blog/article/a-to-z-of-excel-functions/the-if-function

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Link to Others
These newsletters are not intended to be
closely guarded secrets. Please feel free
to forward this newsletter to anyone you
think might be interested in converting to

“the SumProduct way”.

If you have received a forwarded
newsletter and would like to receive
future editions automatically, please

subscribe by completing our newsletter
registration process found at the foot of
any www.sumproduct.com web page.

Any Questions?
If you have any tips, comments or queries
for future newsletters, we’d be delighted
to hear from you. Please drop us a line at

newsletter@sumproduct.com.

Our Services
We have undertaken a vast array of
assignments over the years, including:
· 	 Business planning
· 	 Building three-way integrated 		
	 financial statement projections
· 	 Independent expert reviews
· 	 Key driver analysis
· 	 Model reviews / audits for internal 	 	
	 and external purposes
· 	 M&A work
· 	 Model scoping
· 	 Power BI, Power Query & Power Pivot
· 	 Project finance
· 	 Real options analysis
· 	 Refinancing / restructuring
· 	 Strategic modelling
· 	 Valuations
· 	 Working capital management
If you require modelling assistance of any
kind, please do not hesitate to contact us
at contact@sumproduct.com.

Training
SumProduct offers a wide range of
training courses, aimed at finance
professionals and budding Excel experts.
Courses include Excel Tricks & Tips,
Financial Modelling 101, Introduction to
Forecasting and M&A Modelling.

Drop us a line at training@sumproduct.com
for a copy of the brochure or download
it directly from
www.sumproduct.com/training.

Check out our
more popular
courses in
our training
brochure:

contact@sumproduct.com
www.sumproduct.com
+61 3 9020 2071

Sydney Address:	 SumProduct Pty Ltd, Suite 803, Level 8, 276 Pitt Street, Sydney NSW 2000
New York Address:	 SumProduct Pty Ltd, 48 Wall Street, New York, NY, USA 10005
London Address:	 SumProduct Pty Ltd, Office 7, 3537 Ludgate Hill, London, EC4M 7JN, UK
Melbourne Address:	SumProduct Pty Ltd, Ground Floor, 470 St Kilda Road, Melbourne, VIC 3004
Registered Address:	SumProduct Pty Ltd, Level 14, 440 Collins Street, Melbourne, VIC 3000

Key Strokes
Each newsletter, we’d like to introduce you to useful keystrokes you may or may not be aware of. This time, we thought we would
regain CTRL of the alphabet:

Keystroke What it does
CTRL + A Select current region, select all
CTRL + B Bold (toggle)
CTRL + C Copy
CTRL + D Fill down
CTRL + E Flash fill
CTRL + F Find dialog
CTRL + G Go To
CTRL + H Replace
CTRL + I Italic (toggle)

CTRL + J Enter a line break (for Find / Replace or Text to
Columns)

CTRL + K Insert Hyperlink
CTRL + L Excel 2007: Create Table; Excel 2003: Create List

Keystroke What it does
CTRL + N New Workbook
CTRL + O Open Workbook
CTRL + P Print
CTRL + Q Quick Analysis
CTRL + R Fill right
CTRL + S Save
CTRL + T Excel 2007: Insert Table
CTRL + U Underline (toggle)
CTRL + V Paste
CTRL + W Close Window
CTRL + X Cut
CTRL + Y Redo
CTRL + Z Undo

There are c.550 keyboard shortcuts in Excel. For a comprehensive list, please download our Excel file at http://www.sumproduct.com/
thought/keyboard-shortcuts. Also, check out our new daily Excel Tip of the Day feature on the www.sumproduct.com homepage.

Location Course Course Date Local TIme UTC Duration

London UK Financial Modelling 13 January 2025
- 14 January 2025 09:00 - 17:00 GMT 13 January 2025 09:00 UTC

- 14 January 2025 16:00 UTC 2 Days

Melbourne Australia Power Pivot, Power Query and Power BI 14 January 2025
- 15 January 2025 09:00 - 17:00 AEDT 13 January 2025 22:00 UTC

- 15 January 2025 06:00 UTC 2 Days

Melbourne Australia ChatGPT 15 January 2025
- 16 January 2025 09:00 - 17:00 AEDT 14 January 2025 22:00 UTC

- 16 January 2025 06:00 UTC 2 Days

Melbourne Australia Excel Tips and Tricks 20 January 2025 09:00 - 17:00 AEDT 19 January 2025 22:00 UTC
- 20 January 2025 06:00 UTC 1 Day

Sydney Australia Excel Tips and Tricks 22 January 2025 09:00 - 17:00 AEDT 21 January 2025 22:00 UTC
- 22 January 2025 06:00 UTC 1 Day

London UK ChatGPT 22 January 2025
- 23 January 2025 09:00 - 17:00 GMT 22 January 2025 09:00 UTC

- 23 January 2025 17:00 UTC 2 Days

London UK Financial Modelling 17 February 2025
- 18 February 2025 09:00 - 17:00 BST 17 February 2025 09:00 UTC

- 18 February 2025 16:00 UTC 2 Days

Melbourne Australia Power Pivot, Power Query and Power BI 18 February 2025
- 19 February 2025 09:00 - 17:00 AEDT 17 February 2025 22:00 UTC

 - 19 February 2025 06:00 UTC 2 Days

Melbourne Australia ChatGPT 19 February 2025
- 20 February 2025 09:00 - 17:00 AEDT 18 February 2025 22:00 UTC

- 20 February 2025 06:00 UTC 2 Days

Upcoming SumProduct Training Courses

http://www.sumproduct.com
mailto:newsletter%40sumproduct.com?subject=
mailto:contact%40sumproduct.com?subject=
mailto:?subject=training%40sumproduct.com
http://www.sumproduct.com/training
mailto:contact%40sumproduct.com?subject=
http://www.sumproduct.com

http://www.sumproduct.com/thought/keyboard-shortcuts
http://www.sumproduct.com/thought/keyboard-shortcuts
http://www.sumproduct.com

