
Last month, we received some positive feedback regarding my VLOOKUP
tirade. However, I was taught if you are going to criticise, you should
criticise constructively, so I thought, whilst it’s a bit quieter here in
SumProductLand, I’d revisit its natural successor: XLOOKUP.
Available in Excel for Microsoft 365, Excel for Microsoft 365 for Mac,
Excel for the web and Excel 2021, XLOOKUP has the following syntax:

XLOOKUP(lookup_value, lookup_vector, results_array, [if_not_found],
[match_mode], [search_mode])

This function seeks out a lookup_value in the lookup_vector and returns
the corresponding value in the results_array. Similar to RANDARRAY,
Microsoft again decided to make a change before pulling the pin and
make both of these functions Generally Available. The current line of
thinking is that there should be an error trap for when a value cannot be
found. Having said that, most of the time you will only require the first
three arguments:

 • lookup_value: this is required and defines what value you want to
 look up
 • lookup_vector: this reference is required and is the row or column
 of data you are referencing to look up lookup_value
 • results_array: this is where the corresponding item is you wish
 to return and is also required (even if it is the same as lookup_
 vector). This does not have to be a vector (i.e. one row or one
 column of cells): it may be an array (with at least two rows and
 at least two columns of cells). The only stipulation is that the
 number of rows / columns must equal the number of rows /
 columns in the column / row vector – but more on that later
 • if_not_found: this optional argument allows you to replace
 the usual return of #N/A with something more informative like an
 alternative formula, text or a value

 • match_mode: this argument is optional. There are four choices:
 o 0: exact match (default)
 o -1: exact match or else the largest value less than or equal to
 lookup_value
 o 1: exact match or else smallest value greater than or equal
 to lookup_value
 o 2: wildcard match. You should use the special character ? to
 match any character and * to match any run of characters.
 What’s impressive, though, is that for certain selections of the
 final argument (search_mode), you don’t need to put your data in
 alphanumerical order! As far as I am aware, this is a first for Excel
 • search_mode: this argument is also optional. There are again four
 choices:
 o 1: search first to last (default)
 o -1: search last to first
 o 2: what is known as a binary search, first to last (requires
 lookup_vector to be sorted). Just so you know, a
 binary search is a search algorithm that finds the position
 of a target value within a sorted array. A binary search
 compares the target value to the middle element of the
 array. If they are not equal, the half in which the target
 cannot lie is eliminated and the search continues on the
 remaining half, again taking the middle element to compare
 to the target value, and repeating this until the target value
 is found
 o -2: another binary search, this time last to first (and again,
 this requires lookup_vector to be sorted).

NEWSLETTER #111 - February 2022

Are things XLOOK-ing up for 2022? After last month’s grumbles about VLOOKUP
and HLOOKUP, we turn our attention to XLOOKUP, one of Excel 365’s most popular new additions – a new addition for a new edition, if
you like. And if you don’t, I’m still going to make the quip anyway…

Power BI appears to be on holiday this month, but we have plenty to keep you occupied in its absence: there is another Beat the Boredom
Challenge, plus our usual articles on Charts & Dashboards, Visual Basics, Power Pivot Principles and Power Query Pointers. We also see I
to I on the A to Z of Excel Functions, with the most Important Function in Excel and the Keyboard Shortcuts SHIFT
CTRL to the end user too.

As always, happy reading and remember: stay safe, stay happy, stay healthy.

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

www.sumproduct.com | www.sumproduct.com/thought

Liam Bastick, Managing Director, SumProduct

Looking Up Data Revisited

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

You can clearly see the XLOOKUP function is shorter:

=XLOOKUP(H52,F41:F47,G41:G47)

Only the first three arguments are needed, whereas VLOOKUP requires both a fourth argument, and, for full flexibility, the COLUMNS function as
well. XLOOKUP will automatically update if rows / columns are inserted or deleted. It’s just simpler.

HLOOKUP has similar issues:

Let’s have a look at XLOOKUP versus last month’s VLOOKUP:

Here, this highlights what happens if I try to deduce the student name
from the Student ID. HLOOKUP cannot refer to earlier rows, just as
VLOOKUP cannot consider columns to the left. Given any unused
elements of the table are ignored also, it’s just good news all round.
Goodbye limitations, hello XLOOKUP.

Indeed, things get even more interesting when you start considering
XLOOKUP’s final two arguments, namely match_mode and search_
mode, viz.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Notice that I am searching the ‘Value’ column, which is neither sorted nor contains unique items. Do you see how the results have changed once
more, depending upon match_mode and search_mode?

The match_mode zero (0) returns “Not Found” now instead of #N/A
because there is no exact match and the formula has now stipulated
what to do in such an instance.

When match_mode is -1, XLOOKUP seeks an exact match or else the
largest value less than or equal to lookup_value (6.5). That would be
4 – but this occurs more than once (B and D both have a value of 4).
XLOOKUP chooses depending upon whether it is searching top down
(search_mode 1, where B will be identified first) or bottom up (search_
mode -1, where D will be identified first). Note that with binary searches
(with a search_mode of 2 or -2), the data needs to be sorted. It isn’t –
hence we have garbage answers that cannot be relied upon.

With match_mode 1, the result is clearer cut. Only one value is the
smallest value greater than or equal to 6.5. That is 7, and is related to
A. Again, binary search results should be ignored, although it is worth
noting “Not Found” occurs when Excel identifies the lookup value has
not been found.

The match_mode 2 results are spurious. This is seeking wildcard
matches, but there are no matches, hence “Not Found” instead of N/A

for the only search_modes that may be seen as creditable (1 and -1). It’s
interesting to note a binary search causes errors which are not trapped
by the new argument.

Clearly binary searches are higher maintenance. In the past, it was worth
investing in them as they did return results more quickly. However,
according to Microsoft, this is no longer the case: apparently, there is “…
no significant benefit to using (sic) the binary search options…”. If this is
indeed the case, then I would strongly recommend not using them going
forward with XLOOKUP.

Whilst XLOOKUP wins hands down against HLOOKUP and VLOOKUP, the
same cannot necessarily be said for LOOKUP. You may recall LOOKUP
has two forms: an array form and a vector form. As a reminder:

 • an array is a collection of cells consisting of at least two rows and
 at least two columns

 • a vector is a collection of cells across just one row (row vector) or
 down just one column (column vector).

The diagram should be self-explanatory:

The array form of LOOKUP looks in the first row or column of an array for
the specified value and returns a value from the same position in the last
row or column of the same array:

LOOKUP(lookup_value, array)

where:

 • lookup_value is the value that LOOKUP searches for in an array.
 The lookup_value argument can be a number, text, a logical value,
 or a name or reference that refers to a value

 • array is the range of cells that contains text, numbers, or logical
 values that you want to compare with lookup_value.

The array form of LOOKUP is very similar to the HLOOKUP and VLOOKUP
functions. The difference is that HLOOKUP searches for the value of
lookup_value in the first row, VLOOKUP searches in the first column,
and LOOKUP searches according to the dimensions of array.

If array covers an area that is wider than it is tall (i.e. it has more columns
than rows), LOOKUP searches for the value of lookup_value in the
first row and returns the result from the last row. Otherwise, LOOKUP

searches for the value of lookup_value in the first column and returns
the result from the last column instead.

The alternative form is the vector form:

LOOKUP(lookup_value, lookup_vector, [result_vector])

The LOOKUP function vector form syntax has the following arguments:

 • lookup_value is the value that LOOKUP searches for in the first
 vector

 • lookup_vector is the range that contains only one row or one
 column

 • [result_vector] is optional – if ignored, lookup_vector is used –
 this is the where the result will come from and must contain the
 same number of cells as the lookup_vector.

Like the default versions of HLOOKUP and VLOOKUP, lookup_value
must be located in a range of ascending values.

Let me demonstrate with an example:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

LOOKUP is a great function to use with time series analysis / forecasting.
Dates are in ascending order and the LOOKUP syntax is remarkably simple.
As a modeller, I use it regularly when I am modelling many more forecast
periods than I want assumption periods.

Here, you can see I carry assumptions only for 2020 until 2024 (the final
value is 2024, just with a “+” in number formatting). The formula

=LOOKUP(G$74,$G$67:$K$68)

returns the corresponding value for the period that is either an exact
match or else the largest value less than or equal to the lookup_value.
LOOKUP uses the top row of the table for looking up its data and the final

row for returning the corresponding value. Simple. As for XLOOKUP:

=XLOOKUP(G$82,$G$67:$K$67,$G$68:$K$68,-1)

This formula is longer and requires two additional arguments (match_
mode -1 is required to mirror the behaviour of LOOKUP). Indeed, given
that an IF statement is required to ensure no errors for earlier periods, e.g.

=IF(G$90<$G$67,$G$68,LOOKUP(G$90,G67:K68))

it may be argued that LOOKUP is a simpler function to use here than its
counterpart.

This isn’t the only time LOOKUP outperforms XLOOKUP:

Here, we do see a limitation of XLOOKUP. Whilst the third argument of XLOOKUP, results_array, does not need to be a vector, it cannot be the
transposition of the lookup_vector. You would have to transpose it using the TRANSPOSE function, for example. This makes LOOKUP much easier
to use – compare:

=LOOKUP(H112,F105:F109,G102:K102)

with

=XLOOKUP(H112,F105:F109,TRANSPOSE(G102:K102))

In this instance, LOOKUP wins.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

XLOOKUP can be used to perform a two-way match, similar to INDEX MATCH MATCH:

Many advanced users might use the formula

=INDEX(H40:N46,MATCH(G53,G40:G46,0),MATCH(G51,H39:N39,0))

where:

 • INDEX(array, row_number, [column_number]) returns a value
 or the reference to a value from within a table or range (list) citing
 the row_number and the column_number

 • MATCH(lookup_value, lookup_vector, [match_type]) returns the
 relative position of an item in an array that (approximately) matches
 a specified value. It’s most commonly used with match_type zero
 (0), which requires an exact match.

Therefore, this formula finds the position in the row for the student and
the position in the column of the subject. The intersection of these two
provides the required result.

XLOOKUP does it differently:

=XLOOKUP(G53,G40:G46,XLOOKUP(G51,H39:N39,H40:N46))

Welcome to the wonderful world of the nested XLOOKUP function! Here,
the internal formula

=XLOOKUP(G51,H39:N39,H40:N46)

demonstrates a key difference between this and your typical lookup
function – the first argument is a cell, the second argument is a column
vector and the third is an array – with, most importantly, the same number
of rows as the lookup_vector. This means it returns a column vector of
data, not a single value. This is great news in the brave new world of
dynamic arrays.

In essence, this means the formula resolves to

=XLOOKUP(G53,G40:G46,J40:J46)

as J40:J46 is the resultant vector of =XLOOKUP(G51,H39:N39,H40:N46).
This is a really powerful – and virtually new – concept to get your head
around, that admittedly SUMPRODUCT exploits too. Once you understand
this, it’s clear how this formula works and opens your eyes to the power of
nested XLOOKUP functions.

I can’t believe I am talking about the virtues of nested functions here! Let
me change the subject quickly…

To show you how dynamic arrays can make the most of being able to
create resultant vectors, consider the following example:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The formula

=XLOOKUP(G77,I65:L65,I66:L72)

again resolves to a vector – but this time is allowed to spill as a dynamic array. Obviously, this will only work in Office 365, but it’s a very useful tool that
might just make you think it’s time to drop that perpetual licence.

Once you start playing with the dynamic range side, you can start to get imaginative. For example:

In this illustration, I want to calculate the sales between two periods:

This might seem like a simple drop-down list using data validation (ALT + D + L), but XLOOKUP has been used in determining the list to be used for the
end months.

Let me explain. I have hidden the range of relevant dates in cell H101 spilled across

XLOOKUP can return a reference, so the formula

=XLOOKUP(G100,H94:S94,H94:s94):S94

evaluates to the row vector N94:S94 (since the start month is July). This spilled dynamic array formula is then referenced in the data validation:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

(You may recall H101# means the spilled range starting in cell H101.) It
should be noted that the formula =XLOOKUP(G100,H94:S94,H94:s94):S94
may not be used directly in the ‘Data Validation’ dialog, but this is a neat
trick to ensure you cannot select an end month before the start month
(assuming you are a rational human being that selects the start before
the end!).

The formula to sum the sales then is

=SUM(XLOOKUP(G100,H94:S94,H95:S95):XLOOKUP(G101,H94:S94,
H95:S95))

Again, this uses the fact XLOOKUP can return a reference, so this formula
equates to

=SUM(N95:Q95)

Easy! Now I am combining two XLOOKUP formulae with a colon (:) to
form a range. This joins other illustrious functions used this way such as
CHOOSE, IF, IFS, INDEX, INDIRECT, OFFSET, SINGLE (@), SWITCH and TEXT.
First nesting, now joining – what’s next?

Seeking partial matches (sounds like an unfussy dating agency!) suddenly
became a lot easier too. You can use wildcards if you want to – just set the
match_mode to 2:

Here, I am searching for J?n*n* - which is fine as long as you know what the wildcard characters mean:

 • ? means “any character”, but just one character. If you wanted to make space for two and only two characters you would use ??

 • * means “any number of characters’ – including zero.

For example, M?n*m* would identify “Manmade”, “minimum” and “Manikum” but would not accept “millennium”. Here, our formulae

=XLOOKUP(G184,H174:H179,I174:I179,,2)

=XLOOKUP(G184,H174:H179,I174:I179,,2,-1)

would locate the first and last items that satisfied the condition J?n*n* (i.e. “Jonathan” and “Jonny” respectively).

But what if you wanted an exact match with case sensitivity? You just have to think a little but outside of the proverbial box:

Here, we use another feature of XLOOKUP – its ability to search a virtual vector, i.e. one that has been constructed in memory, rather than physically
within the spreadsheet cells. Consider the formula

=XLOOKUP(TRUE,EXACT(H145:H154,G159),I145:I154)

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, the interim calculation =EXACT(H145:H154,G159), looks at the range H145:H154 and deduces whether the cells are an exact match for the
selection ‘Sum Product’ in cell G159. The EXACT function would evaluate as

{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE}

Therefore, the formula coerces to

=XLOOKUP(TRUE,{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE},I145:I154)

and then the formula becomes simple to understand.

With many of us currently “working from home” / quarantined, there are
only so Zoom / Teams calls and virtual parties you can make before you
reach your (data) limit. Perhaps they should measure data allowance
in blood pressure millimetres of mercury (mmHg). To try and keep our

readers engaged, we will continue to reproduce some of our popular Final
Friday Fix challenges from yesteryear in this and upcoming newsletters.
One suggested solution may be found later in this newsletter. Here’s this
month’s…

It’s time to chart our progress with an introductory series into the world
of creating charts and dashboards in Excel. This month, we look at Radar
charts.
A Radar chart, also known as a Spider chart or a Web chart, shows
movements in data relative to both a central point and to the other
data points. Where a Line chart has a horizontal axis, the axis in a Radar
chart is effectively wrapped around so that each category becomes like
a spoke on a wheel. The length of each spoke which extends from the
centre of the chart to the outermost point on the chart represents the
vertical axis of a similar Line chart.

Let’s imagine that a company management were asked to provide input
about the performance of the company’s departments at the end of the
2018 and 2019 financial years. This information was collated to produce
a score for each department expressed as a percentage. The more
satisfied management were with a particular department, the higher
the percentage. This data could quite easily be used to produce a Line
chart, Bar chart or Column chart, but using a Radar chart gives a different
perspective on the results. Below is an example of how the same data
would look on a Line chart versus a Radar chart:

So how do we produce a Radar chart? First, prepare the data table. In the case of our example, we may list each department with their evaluation
percentages for 2018 and 2019:

If you weren’t aware, it’s possible to make specific characters bold in a cell, without emboldening others. The same applies to italics, underline, and
so on. Therefore, you can create lines of text that look like this, quite easily.

Looking Up Data Revisited

Charts and Dashboards

The Challenge

This month’s challenge is likely to need a VBA solution just for a change! Can you find a way to extract and output just the bold characters from a cell?

Sound easy? Try it. One solution just might be found later in this newsletter – but no reading ahead!

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Then, we highlight the data and the column headings (do not select the table heading) and go to the Insert tab on the Ribbon. The Radar chart is under
the last small icon along the top of the Charts section. Alternatively, we may click on the ‘Recommended Charts’ icon or the small arrow in the bottom
right of the Charts section, and then go to the ‘All Charts’ tab to locate the Radar Chart. There are just three variations for the Radar Chart:

 • the first plots the data series using lines only
 • the second variation maps the data series with lines and markers
 • the third chart option fills the area within the shape created by each data series.

Please be aware of the limitations of using the filled Radar chart. It is
possible that the area covered by one data series on the Radar chart might
overlap data points from another series, meaning you cannot see the data
points underneath and therefore part of the area occupied by the second
series. If you are using the filled Radar chart, it is highly recommended that
you make the area partially transparent so you can see any data points and
area underneath each data series. Transparency is found by selecting the
data series, right click and choose ‘Format Data Series’, go to the Marker
section and under Fill there is an option to set the Transparency.

Also, it is important to note that by joining the data points with lines,
it can be interpreted that these data points may relate to each other,
but this may not be correct. With our example for instance, while the
data points representing the evaluation rating for each department are
joined together by lines, the score for one department has no bearing or
relationship to the score of the adjacent departments on the chart.

Using the department performance result data, our Radar Chart initially
looks like the following:

There are some changes we need to make:

 • to move the legend below the chart, select the legend, right-click and choose ‘Format Legend’, then specify that you require the legend position
 to be at the bottom of the chart
 • we’d also like to see the 50% line on the graph. To achieve this, select the axis labels (by clicking on one of the 0% to 100% labels), right-click and
 choose ‘Format Axis’, then under the ‘Axis Options’, change the Major setting under Units to 0.25 instead of 0.2. This will set the chart units to be
 0%, 25%, 50%, 75% and 100%
 • also, still within ‘Format Axis’, under the ‘Fill & Line’ area (the bucket icon), we may add spoke lines by changing the lines to be solid and assigning
 a colour to them

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	 The	“rings”	in	the	chart	are	the	equivalent	of	the	horizontal	gridlines	of	the	Line	chart.		To	change	the	formatting	for	these	gridlines,	simply	click		
	 	 on	one	of	the	“rings”,	right-click	and	choose	‘Format	Gridlines’,	and	proceed	to	change	the	colour,	width,	type,	etc.

Once	we	have	applied	all	the	formatting,	the	final	chart	looks	similar	to	the	following:

More next month…

We thought we’d run an elementary series going through the rudiments of Visual Basic for Applications (VBA) as a springboard for newer users.
This month, we continue looking at using ListObjects to manipulate Tables within an Excel workbook in VBA, this time featuring the Totals Row.

Sometimes, tables don’t have totals rows. Let’s consider the following table:

Visual Basics

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The Totals Row is easily found in the Table Menu here (or CTRL + SHIFT + T for you keyboard shortcut enthusiasts):

However, how can we do this in VBA? It is simply the ShowTotals property of the ListObject. This is a Boolean setting; if it is TRUE then the Total Row
is displayed (and you may switch it off by setting it to FALSE).

Then the Totals Row appears:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Notice how it has put a formula in the last column which is the default setting of showing the totals row:

=SUBTOTAL(103,[Album Length])

Why? Excel makes a rough judgment about which of the SUBTOTAL functions it would like to use and in this case has chosen 103 – COUNT.
Sometimes it doesn’t use the right one. To edit the Totals Row, you could very easily edit it by using the TotalsRowRange property of ListObject.
Let’s delete the word “Total” in the row.

It then results in the following (as expected):

You might wish to populate the Totals Row with calculations. This is
done using the ListColumns method of ListObject. Although ListColumns
hasn’t been covered in detail in previous articles, it’s straightforward.
Columns in a table may be referred to by the ListColumns property by

using the index or by the header. Then, we use the TotalsCalculation
method to change the calculation in the row. The following calculations
may be used:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Using this table:

Notice that SUBTOTAL functions 106 and 108 are not available in the VBA Syntax. However, there are two further TotalsCalculations that are
available: xlTotalsCalculationNone which is identical to clearing the cell and xlTotalsCalculationCustom, which doesn’t appear to do much at all.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

xlTotalsCalculationCustom just puts a =0 for the formula, which is not very helpful. However, what if you wanted to calculate the average song
length? Let’s use an array formula using the AVERAGE function as follows:

{=AVERAGE(Table_BTDisco[Album Length]/Table_BTDisco[Number Of Songs])}

So how could this be achieved?

The TotalsRowRange could be used as above, but ListColumns also has a method Total, which allows access to the Totals Range for that particular
column. Let’s use ArrayFormula to put the formula in the Album Length column and change the number format to show minutes and seconds.

More next time.

We continue our series on the Excel COM add-in, Power Pivot.
This month, we revisit calculated columns in Power Pivot.

Calculated columns perform a calculation for every individual
row in a given table, whereas a measure is only calculated
for the filtered, aggregated cells that are used in a PivotTable
or a PivotChart; because of this, the formula in a calculated
column can be more resource intensive than a formula used
in a measure.

For instance, a calculated column in a table with a million rows
will always have to calculate one million results. A PivotTable
will generally have filters and slicers culling the reporting
table to much less than one million rows. Furthermore, any
measure is only calculated for the subset of data in each cell
in the PivotTable.

Also, note that if a formula in a calculated column has
dependencies on object references, such as other columns
and other expressions, the calculated column at the end of
the dependency cannot be evaluated until all of the other
columns have been evaluated. Updating data will cause the
entire dependency chain to refresh. This may slow down
the responsiveness of the model if there are too many
dependencies built into the model.

Power Pivot Principles

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Keeping these points in mind, unless it is absolutely necessary we should
stick to creating measures rather than calculated columns when we can.
If multiple calculated columns are needed, we recommend the following:

 • step out any formula that contain multiple dependencies, with
 results saved to columns so that we are able to validate the results
 and evaluate any impacts on performance

 • a little more controversially, if updating data with numerous
 calculated columns with interdependencies, you might wish
 to consider setting the (re)calculation mode temporarily to
 manual. Remember to switch the mode back to automatic after
 updating though.

More Power Pivot Principles next month.

Each month we’ll reproduce one of our articles on Power Query (Excel 2010 and 2013) / Get & Transform (Office 365, Excel 2016 and 2019) from
www.sumproduct.com/blog. If you wish to read more in the meantime, simply check out our Blog section each Wednesday. This month, look at how
to transform extracted data into a useful table.

Regular readers will be familiar with our fictional salespeople and their tendency to supply data in the wrong format. Let’s meet John.

Whilst John has supplied his expenses, the format we would like to see them in is something like this:

Power Query Pointers

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/blog

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

To start the process, let’s extract John’s data into Power Query:

We may select the data and use ‘From Table’ on the ‘Get and Transform’ section of the ‘Data’ tab. Our data will be converted to a Table as part of
the process.

The first two rows are not useful, so our first step is to remove them using the ‘Remove Rows’ option in the ‘Reduce Rows’ section.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We could remove them based upon a parameter, but we just want to get rid of the first two rows so let’s choose the ‘Decimal Number’ option.
We also remove the row of null values beneath our ‘Date’ row by removing blank rows.

We want to create a column from the Date cell. The first step to achieving this is to right-click on the Date cell and use the option to ‘Add as New
Query’. This creates a new query in the queries panel on the left of the screen.

The new query, automatically called ‘Column2’, includes our earlier source steps and the value in the top row of Column2 – the date.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Having created this query, we need to make sure the next steps we add are to the ‘Table1’ query. Now we may transform the rest of the data to
appear in the format that we would like.

The steps we have taken are:

 1. Removed Top Rows1: having moved the date to a separate query, we could remove the ‘Date’ row

 2. Promoted Headers: since we wanted to just keep my expense types and values, we promoted the expense to headers to get rid of the
 generic Column1 etc. (the ‘Changed Type1’ step was an automated Power Query step)

 3. Unpivoted Columns” we didn’t want to keep our expense types as headers; we ultimately want to store them in a column under the heading
 ‘Expense Type’, so we unpivoted to get the data as it is shown (above).

Now all that remains is to rename our columns and add a Date column. To do this, we will add a custom column.

Having referenced the other query (which is easy to check as I can see it in the left-hand pane), we click ‘OK’.

The date appears as a new column.

More next month!

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

January always seems to be a relatively quiet month down at Power BI HQ. As at the time of writing, no new features have been announced – so do
watch out for our next newsletter which will probably have double the fun if history were to repeat itself.

More next month, we’re sure!!

So what’s the most Important Function in Excel? Did you realise that’s
what IF is an abbreviation for? Not surprising as I just made it up.
However, there is some truth in the jest. The syntax for IF demonstrates
just how useful this function is for financial modelling:

=IF(logical_test, [value_if_TRUE], [value_if_FALSE])

This function has three arguments:

 • logical_test: this is the “decider”, that is, a test that results in a
 value of either TRUE or FALSE. Strictly speaking, the logical_test
 tests whether something is TRUE; if not, it is FALSE

 • value_if_TRUE: what to do if the logical_test is TRUE. Note that you
 do not put square brackets around this argument. This is just the Excel
 syntax for saying sometimes this argument is optional. If this
 argument is indeed omitted, this argument will have a default value
 of TRUE

 • value_if_FALSE: what to do if the logical_test is FALSE (strictly
 speaking, not TRUE). If this argument is left blank, this argument
 will have a default value of FALSE.

This function is actually more efficient than it may look at first glance.
Whilst the logical_test is always evaluated, only one of the remaining
two arguments is computed, depending upon whether the logical_test
is TRUE or FALSE.

Care should be taken with logical tests as this is the source of many,
many errors in spreadsheets. Logical tests assess the criterion/criteria
stipulated, no more no less. It assumes a binary universe: X and
NOT(X). This isn’t always how our minds think, as I will explain with an
exaggerated example.

Intrepid explorer Ivor Challenge is lost in the jungle and needs to find
shelter for the night as a rainstorm beckons. Immediately ahead is a
clearing with two caves. He writes a formula to determine which cave
to sleep in:

=IF(Cave 1 has a bear, sleep in Cave 2, sleep in Cave 1).

The logical_test is to check whether Cave 1 contains a bear. As it turns
out, it doesn’t so he sleeps in there and is mauled to death by the lioness
who was in there.

Next day, his wife, Cher Challenge, goes searching for him, gets tired and
comes across the same caves and uses the same formula to determine
which cave to sleep in:

=IF(Cave 1 has a bear, sleep in Cave 2, sleep in Cave 1).

The logical_test is to check whether Cave 1 contains a bear. As it turns
out, this time there is (together with some human bones) and so she
sleeps in Cave 2 and is eaten by the other bear.

When using IF formulas, you need to train yourself to think logically
like a computer. Common sense does not apply. Consider the logic
function NOT(expression), which is everything that is not equivalent to
the expression. The opposite of a boy is “not a boy”: “girl” is incorrect.

Take care with inequalities in particular. The opposite of x is greater
than y is either x is less than or equal to y, or NOT(x is greater than y).
This is a common error and it has caused embarrassing mistakes time
and time again in business.

Returning to the IF function, let’s consider an example:

Power BI Updates

The A to Z of Excel Functions: IF

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In this example, the intention is to evaluate the quotient Numerator /
Denominator. However, if the Denominator is either blank or zero, this
will result in an #DIV/0! error. Excel has several errors that it cannot
evaluate, such as #REF!, #NULL, #N/A, #Brown, #Pipe. OK, so one or two
of these I may have made up, but prima facie errors should be avoided
in Excel as they detract from the key results and cause the user to doubt
the overall model integrity. Worse, in some instances these errors may
contribute to Excel crashing and/or corrupting.

This is where IF comes in. In my example above,

=IF(Denominator=0,,Numerator/Denominator)

tests whether the Denominator is zero. This is the conditional formula. If
so, the value is unspecified (blank) and will consequently return a value
of zero in Excel; otherwise, the quotient is calculated as intended.

This type of conditional formula is known as creating an error trap. Errors
are “trapped” and the ‘harmless’ value of zero is returned instead. You
could put “n.a” or “This is an error” as the value_if_TRUE, but you get
the picture.

It is my preference not to put a zero in for the value_if_TRUE: personally,
I think a formula looks clearer this way, but inexperienced end users may
not understand the formula and you should consider your audience
when deciding to put what may appear to be an unnecessary zero in a
formula. The aim is to keep it simple for the end user.

An IF statement is often used to make a decision in the model:

=IF(Decision_Criterion=TRUE, Do_it, Don’t_Do_It)

This automates a model and aids management in decision making and
what-if analysis. IF is clearly a very powerful tool when used correctly.

IFERROR first came into being back in Excel 2007. It was something users had asked Microsoft for, for a very long time. But let me go back in time
first and explain why.

At the time of writing, there are 12 IS functions, i.e. functions that give rise to a TRUE or FALSE value depending upon whether a certain condition is
met:

 1. ISBLANK(Reference): checks whether the Reference is to an empty cell
 2. ISERR(Value): checks whether the Value is an error (e.g. #REF!, #DIV/0!, #NULL!). This check specifically excludes #N/A
 3. ISERROR(Value): checks whether the Value is an error (e.g. #REF!, #DIV/0!, #NULL!). This is probably the most commonly used of these
 functions in financial modelling
 4. ISEVEN(Number): checks to see if the Number is even
 5. ISFORMULA(Reference): checks to see whether the Reference is to a cell containing a formula
 6. ISLOGICAL(Value): checks to see whether the Value is a logical (TRUE or FALSE) value
 7. ISNA(Value): checks to see whether the Value is #N/A. This gives us the rather crude identity ISERR + ISNA = ISERROR
 8. ISNONTEXT(Value): checks whether the Value is not text (N.B. blank cells are not text)
 9. ISNUMBER(Value): checks whether the Value is a number
 10. ISODD(Number): checks to see if the Number is odd. Personally, I find the number 46 very odd, but Excel doesn’t
 11. ISREF(Value): checks whether the Value is a reference
 12. ISTEXT(Value): checks whether the Value is text.

You get the idea. As mentioned previously, sometimes you need to trap errors that may originate from a formula that is correct most of the time.
Where possible, you should be specific with regard to what you are checking, e.g.

=IF(Denominator=0, Error_Trap, Numerator / Denominator)

In this example, I am checking to see whether the Denominator is zero. I could use this formula instead:

=IF(ISERROR(Numerator / Denominator), Error_Trap, Numerator / Denominator)

The difference here is that this will check for anything that may give rise to an error:

The A to Z of Excel Functions: IFERROR

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Do you see the problem here? I have to put the same formula in twice. If that is a long formula, then the calculation becomes doubly long. This is
where IFERROR comes in; it halves the length of the calculation but still achieves the same effect

=IFERROR(Calculation, Error_Trap)

Essentially, this formula is the bastard lovechild of IF and ISERROR. It checks to see whether the Calculation will give rise to a prima facie error. If it
does, it will return Error_Trap; otherwise, it will perform the said Calculation, e.g.

You shouldn’t just sprinkle IFERROR throughout your models like your
formulae are confetti. Used unwisely, IFERROR can disguise the fact that
your formula isn’t working correctly and that modifications to the logic
may be required. Try to use it sparingly.

Sometimes you have to use IF and ISERROR in combination anyway:

=IF(ISERROR(Calculation), Error_Trap, Different_Calculation)

In this example, the formula is checking to see whether a particular

Calculation gives rise to an error. If it does, the Error_Trap will be
referenced in the usual way, but if not a Different_Calculation (not the
Calculation used for the test) will be computed.

These two methodologies should be mastered. You will create more
robust and flexible models once your error become a thing of the past.
Not just the model – but your own expertise – will become more trusted
in your organisation if users never encounter prima facie errors in your
model.

The IFNA function returns the value you specify if a formula returns the #N/A error value; otherwise it returns the result of the formula.

IFNA has the following syntax:

IFNA(value, value_if_NA)

 • value: this is required and represents the argument that is checked for the #N/A error

 • value_if_NA: this is also required. This is the value to return if the formula (value) evaluates to the #N/A error value.

It should be noted that:

 • if value or value_if_NA is an empty cell, IFNA treats the argument(s) as an empty string value ("")

 • if value is an array formula, IFNA returns an array of results for each cell in the range specified in value.

The A to Z of Excel Functions: IFNA

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Please see our example below.

As a model developer and reviewer, I must confess I remain unconvinced
about this one. If you have ever used a formula with nested IF statements
beginning with

=IF(IF(IF…

then maybe this next function is for you – however, if you have ever
written Excel formulas like this, then maybe Excel isn’t for you! There are
usually better ways of writing the formula using other functions.

Office 365 and Excel 2019 in all its variants has the relatively new function
IFS. The syntax for IFS is as follows:

IFS(logical_test1, value_if_true1, [logical_test2, value_if_true2],
[logical_test3, value_if_true3],…)

where:

 • logical_test1 is a logical condition that evaluates to TRUE or FALSE

 • value_if_true1 is the result to be returned if logical_test1
 evaluates to TRUE. This may be empty

 • logical_test2 (and onwards) are further conditions that evaluate
 to TRUE or FALSE also

 • value_if_true2 (and onwards) are the respective results to be
 returned if the corresponding logical_test evaluates to TRUE. Any
 or all may be empty.

Since functions are limited to 254 arguments (sometimes known as
parameters), the IFS function can contain 127 pairs of conditions and
results.

One thing to note is that IFS is not quite the same as IF. With the IF
statement, the third argument corresponds to what do if the logical_
test is not TRUE (that is, it is an ELSE condition). IFS does not have an
inherent ELSE condition, but it can be easily generated. All you have to
do is make the final logical_test equal to a condition which is always true
such as TRUE or 1=1 (say).

Other issues to consider:

 • whilst the value_if_true may be empty, it must not be omitted.
 Having an odd number of arguments in an IFS statement would
 give rise to the “You’ve entered too few arguments for this
 function” error message

 • if a logical_test is not actually a logical test (for example, it
 evaluates to something other than TRUE or FALSE, the function
 returns an #VALUE! error. Numbers still appear to work though:
 any number than zero evaluates as TRUE and zero is considered
 to be FALSE

 • if no TRUE conditions are found, this function returns the #N/A
 error.

To show how it works, consider the following example:

The A to Z of Excel Functions: IFS

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, would-be gurus are graded based on evaluation criteria in the
table, applied in a particular order:

=IFS(H13="Yes",I13,H14="Yes",I14,H15="Yes",I15,H16="Yes",I16,TRUE
,"Not a Guru")

I think it’s safe that although it is reasonably straightforward to follow, it
is entirely reasonable to say it’s not the prettiest, most elegant formula
ever put to Excel paper. In particular, do pay heed to the final logical_
test: TRUE. This ensures we have an ELSE condition as discussed above.

To be fair, one similar solution using previous Excel functions isn’t any
better:

=IF(H13="Yes",I13,IF(H14="Yes",I14,IF(H15="Yes",I15,IF(H16="Yes",I16
,"Not a Guru")))).

You may note I am not supplying multiple examples of IFS formulae. This
is because wherever possible you should try and replace the logic with
a simpler, more accessible, logic for end users. For instance, sometimes
the logic of an elongated IF or IFS formula may be condensed to

=IF(Multiple Conditions = TRUE, Do Something, Do Something Else).

In this situation, there is a function in Excel that can help.

My old English teacher said you should never start or finish a sentence
with the word “and”. AND is one of several Excel logic functions (others
include NOT [already mentioned earlier, which takes the logical opposite
of an expression] and OR). It returns TRUE if all of its arguments evaluate
to TRUE; it returns FALSE if one or more arguments evaluate to FALSE.

One common use for the AND function is to expand the usefulness
of other functions that perform logical tests. For example, the IF
function performs a logical test and then returns one value if the test
evaluates to TRUE and another value if the test evaluates to FALSE.
By using the AND function as the logical_test argument of the IF
function, you can test many different conditions instead of just one.

For example, imagine you are in New York on a Monday. Consider the
expression

=AND(condition1, condition2, condition3)

where:

 • condition1 is the condition, “today is Monday”
 • condition2 is the condition, “you are in New York” and
 • condition3 is the condition, “this author is the best looking guy
 you have ever seen”.

This would clearly be FALSE as not everywhere in the world it would be
Monday (that is, condition1 would be breached)…

As alluded to above, the syntax for AND is as follows:

AND(logical1, [logical2], …)

where:

 • logical1: the first condition that you want to test that can
 evaluate to either TRUE or FALSE
 • logical2: additional conditions that you want to test that can
 evaluate to either TRUE or FALSE, up to a maximum of 255
 conditions. logical2 is optional and is not needed in the syntax.

It should be noted that:

 • the arguments must evaluate to logical values, such as TRUE or
 FALSE, or the arguments must be arrays or references that contain
 logical values
 • if an array or reference argument contains text or empty cells,
 those values are ignored
 • if the specified range contains no logical values, the AND function
 returns the #VALUE! error value.

To highlight how AND works:

For a more practical example, consider the following summary data table:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, we have a list of staff in column A, with identification of those who
work in Sales (that is, eligible for a bonus) in column B. Details of the
sales made, the threshold for getting a bonus, and what rate it is paid
are detailed in columns C, D, and E respectively. The formula in cell F2:

=IF(AND(B2="yes",C2-D2>=0),C2*E2,)

denotes the Bonus Paid and is conditional on them working in Sales
(B2="yes") and that the sales made were at or above the required
threshold (C2-D2>=0). If both conditions are TRUE, then a bonus
(C2*E2) is paid accordingly (putting nothing after the final comma is
the equivalent of saying “else zero”). This is a prime example of IF and
working together – and more often than not, these formulas are much
easier to read than their IF(IF(IF or IFS counterparts.

The other logic function not yet mentioned, OR, is similar to AND, but
only requires one condition to be TRUE. Similar to AND, the OR function
may be used to expand the usefulness of other functions that perform
logical tests. For example, the IF function performs a logical test and
then returns one value if the test evaluates to TRUE and another value
if the test evaluates to FALSE. By using the OR function as the logical_
test argument of the IF function, you can test many different conditions
instead of just one.

For example, imagine you are in London on a Tuesday. Consider the
expression

=OR(condition1, condition2, condition3)

where:

 • condition1 is the condition, “today is Tuesday”

 • condition2 is the condition, “you are in London” or
 • condition3 is the condition, “the Earth is flat”.

This would clearly be TRUE as you are definitely in London (that is,
condition2 holds).

The syntax for OR is as follows:

OR(logical1, [logical2], …)

where:

 • logical1: the first condition that you want to test that can
 evaluate to either TRUE or FALSE
 • logical2: additional conditions that you want to test that can
 evaluate to either TRUE or FALSE, up to a maximum of 255
 conditions. logical2 is optional and is not needed in the syntax.

It should be noted that:

 • the arguments must evaluate to logical values, such as TRUE or
 FALSE, or the arguments must be arrays or references that
 contain logical values
 • if an array or reference argument contains text or empty cells,
 those values are ignored
 • if the specified range contains no logical values, the OR function
 returns the #VALUE! error value.

In summary, OR works as follows:

For a more practical example, consider the following summary data table:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Now there is a complex formula:

=IF(OR(AND(B2=”yes”,C2-D2>=0),AND(B2<>”yes”,C2-C13>=0)),C2*IF
(B2=”yes”,E2,C15),)

It isn’t quite as bad as it first seems. This is based on the AND case study
from earlier, but it also allows for Non-Sales staff to participate in the
bonus scheme too. The logical_test in the primary IF statement,

OR(AND(B2=”yes”,C2-D2>=0),AND(B2<>”yes”,C2-C13>=0))

Is essentially OR(condition1, condition2). The first condition is as before
for Sales staff, whereas the second,

AND(B2<>”yes”,C2-C13>=0)

checks whether Non-Sales staff have exceeded the Non-Sales Staff
threshold (cell C13). Do you see that the check for Non-Sales staff is
given by B2<>”yes” (B2 is not equal to ”yes”) rather than B2=”no”?
This takes me back to my earlier point about ensuring you develop your
logical_test correctly. It’s a subtle point, but will ensure all staff are
considered (rather than excluding staff where no entry has been made
in column B).

The other IF statement,

IF(B2=”yes”,E2,C15)

simply ensures the correct bonus rate is applied to the sales figure.

In this illustration, you might not understand what the MOD function
does, but hopefully, you can follow each of the flags in rows 4 to 7 without
being an Excel guru. Row 9, the product, simply multiplies all of the flags
together (using the PRODUCT function allows you to add additional

conditions / rows easily). This effectively produces a sophisticated AND
flag, where all of the formulas are mercifully short. If I wanted the flag
to be a 1 as long as one of the above conditions is TRUE (that is, I wish to
construct an OR equivalent), that is easy too:

Flags frequently make models more transparent and this example
provides a great learning point. Often, we mistakenly believe that
condensing a model into fewer cells makes it more efficient and easier
follow. On the contrary, it is usually better to step out a calculation. If
it can be followed on a piece of paper (without access to the formula

bar), then more people will follow it. If more can follow the model logic,
errors will be more easily spotted. When this occurs, a model becomes
trusted and therefore is of more value in decision-making.

Ne careful though. Sometimes you just can’t use flags. Consider the
following instance:

To summarise so far, sometimes your logical_test might consist of
multiple criteria:

=IF(condition1=TRUE,IF(condition2=TRUE,IF(condition3=TRUE,formula,),),)

Here, this formula only gives a value of 1 if all three conditions are true.
This nested IF statement may be avoided using the logical function
AND(Condition1,Condition2,…) which is only TRUE if and only if all
dependent arguments are TRUE,

=IF(AND(condition1,condition2,condition3),formula,)

which is actually easier to read. A similar example may be constructed
for OR also. However, even using these logic functions, formulas may
become – or simply look – complex quite quickly. There is an alternative:
flags. In its most common form, flags are evaluated as

=(condition=TRUE)*1

condition=TRUE will give rise to a value of either TRUE or FALSE. The
brackets will ensure this is condition is evaluated first; multiplying by 1
will provide an end result of zero (if FALSE, as FALSE*1 = 0) or one (if
TRUE, TRUE*1 = 1). I know some modellers prefer TRUEs and FALSEs
everywhere, but I think 1’s and 0’s are easier to read (when there are lots
of them) and more importantly, easier to sum when you need to know
how many issues there are.

Flags make it easier to follow the tested conditions. Consider the
following:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, the flag does not trap the division by zero error. This is because this formula evaluates to

=#DIV/0! x 0

which equals #DIV/0! If you need to trap an error, you must use an IF function.

More Excel Functions next month.

Earlier, we asked if you could find a way to extract and output just the bold characters from the cell. How did you go? We couldn’t find a function
that would help us at all, so we created our own! And not a LAMBDA in sight…

Beat the Boredom Suggested Solution

Suggested Solution

If you’ve been following our VBA blog series and don’t have much experience with VBA at all, then this might go a bit over your head. However, I’ll
try to explain as we go along:

Let’s consider what it’s doing by breaking it into steps:

 • firstly, this produces a function that we’re going to call udfExtractNonBold, and it takes a cell range as its input (e.g. =udfExtractNonBold(A1))
 • for the cell range input, initially it will check to see whether it’s actually a text string. If it’s a number, it will check to see if the whole thing is bold
 • if it’s a text string, then it will run through each character, one at a time. It will then check if that character is bold, and if so, add it to a new
 string that we’re storing (the thing called ‘returnValue’)
 • finally, it will output the returnValue: if there’s no bold in the text string, it will give us a blank result. If there is bold text, it will give us only
 the text that was made bold, and nothing else in the cell.

Until next time.

Upcoming SumProduct Training Courses - COVID-19 update
Due to the COVID-19 pandemic that is currently spreading around
the globe, we are suspending our in-person courses until further
notice. However, to accommodate the new working-from-home
dynamic, we are switching our public and in-house courses to
an online delivery stream, presented via Microsoft Teams, with
a live presenter running through the same course material,
downloadable workbooks to complete the hands-on exercises
during the training session, and a recording of the sessions for

your use within 1 month for you to refer back to in the event
of technical difficulties. To assist with the pacing and flow of
the course, we will also have a moderator who will help answer
questions during the course.

If you're still not sure how this will work, please contact us at
training@sumproduct.com and we'll be happy to walk you
through the process.

Location Course Date Date Duration Duration

Online (Australia) Power Pivot, Power Query and Power BI 16 - 18 Feb 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 23 Feb 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 1 Day

Online (Australia) Financial Modelling 24 - 25 Feb 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 2 Days

Online (Australia) Excel Tips and Tricks 11 Apr 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 12 - 13 Apr 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 10 - 12 May 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 17 May 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 18 - 19 May 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 2 Days

mailto:contact@sumproduct.com
http://www.sumproduct.com

Link to Others
These newsletters are not intended to be
closely guarded secrets. Please feel free
to forward this newsletter to anyone you
think might be interested in converting to

“the SumProduct way”.

If you have received a forwarded
newsletter and would like to receive
future editions automatically, please

subscribe by completing our newsletter
registration process found at the foot of
any www.sumproduct.com web page.

Any Questions?
If you have any tips, comments or queries
for future newsletters, we’d be delighted
to hear from you. Please drop us a line at

newsletter@sumproduct.com.

Our Services
We have undertaken a vast array of
assignments over the years, including:
· Business planning
· Building three-way integrated
	 financial	statement	projections
· Independent expert reviews
· Key driver analysis
·		 Model	reviews	/	audits	for	internal		 	
	 and	external	purposes
·		 M&A	work
·		 Model	scoping
·		 Power	BI,	Power	Query	&	Power	Pivot
·		 Project	finance
·		 Real	options	analysis
·		 Refinancing	/	restructuring
·		 Strategic	modelling
·		 Valuations
·		 Working	capital	management
If you require modelling assistance of any
kind, please do not hesitate to contact us
at contact@sumproduct.com.

Training
SumProduct offers a wide range of
training courses, aimed at finance
professionals and budding Excel experts.
Courses include Excel Tricks & Tips,
Financial Modelling 101, Introduction to
Forecasting and M&A Modelling.

Drop us a line at training@sumproduct.com
for a copy of the brochure or download
it directly from
www.sumproduct.com/training.

Check out our
more popular
courses in
our training
brochure:

Key Strokes
Each newsletter, we’d like to introduce you to useful keystrokes you may or may not be aware of. This month we’d SHIFT CTRL of
the numbers:

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

contact@sumproduct.com
www.sumproduct.com
+61 3 9020 2071

Sydney Address: SumProduct Pty Ltd, Suite 803, Level 8, 276 Pitt Street, Sydney NSW 2000
New York Address: SumProduct Pty Ltd, 48 Wall Street, New York, NY, USA 10005
London Address: SumProduct Pty Ltd, Office 7, 3537 Ludgate Hill, London, EC4M 7JN, UK
Melbourne Address: SumProduct Pty Ltd, Ground Floor, 470 St Kilda Road, Melbourne, VIC 3004
Registered Address: SumProduct Pty Ltd, Level 14, 440 Collins Street, Melbourne, VIC 3000

Keystroke What it does
CTRL + SHIFT 0 Show column

CTRL + SHIFT 1 Fixed decimal and comma format

CTRL + SHIFT 2 Time (AM/PM) format

CTRL + SHIFT 3 Date format

CTRL + SHIFT 4 Currency format

CTRL + SHIFT 5 Percentage format

CTRL + SHIFT 6 Exponential format

CTRL + SHIFT 7 Outline border

CTRL + SHIFT 8 Select current region

CTRL + SHIFT 9 Unhide row

There are c.550 keyboard shortcuts in Excel. For a comprehensive list, please download our Excel file at
www.sumproduct.com/thought/keyboard-shortcuts. Also, check out our new daily Excel Tip of the Day feature on the
www.sumproduct.com homepage.

Location Course Date Date Duration Duration

Online (Australia) Power Pivot, Power Query and Power BI 19 - 21 Jul 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 26 Jul 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 27 - 28 Jul 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 2 Days

Online (Australia) Excel Tips and Tricks 29 Aug 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 30 - 31 Aug 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 28 -30 Sep 2022 09:00-17:00 AEST (-1 day) 23:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 5 Oct 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 1 Day

Online (Australia) Financial Modelling 6 - 7 Oct 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 9 - 11 Nov 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 16 Nov 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 1 Day

Online (Australia) Financial Modelling 17 - 18 Nov 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 7 - 9 Dec 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 14 Dec 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 1 Day

Online (Australia) Financial Modelling 15 - 16 Dec 2022 09:00-17:00 AEDT (-1 day) 22:00-06:00 GMT 2 Days

