XLOQKUP

§rndut:t

NEWSLETTER #111 - February 2022

www.sumproduct.com | www.sumproduct.com/thought

Al’e MS XL-OO K- l./"\vg 202-2? After last month’s grumbles about VLOOKUP

and HLOOKUP, we turn our attention to XLOOKUP, one of Excel 365’s most popular new additions —a new addition for a new edition, if
you like. And if you don’t, I'm still going to make the quip anyway...

Power Bl appears to be on holiday this month, but we have plenty to keep you occupied in its absence: there is another Beat the Boredom
Challenge, plus our usual articles on Charts & Dashboards, Visual Basics, Power Pivot Principles and Power Query Pointers. We also see |

to I on the A to Z of Excel Functions, with the most Important Function in Excel and the Keyboard Shortcuts SHIFT

CTRL to the end user too.

As always, happy reading and remember: stay safe, stay happy, stay healthy.

Liam Ba»yf-wk, Managing Director, SumProduct

Looking Up Data Revisited

Last month, we received some positive feedback regarding my VLOOKUP
tirade. However, | was taught if you are going to criticise, you should
criticise constructively, so | thought, whilst it’s a bit quieter here in
SumProductlLand, I'd revisit its natural successor: XLOOKUP.

Available in Excel for Microsoft 365, Excel for Microsoft 365 for Mac,
Excel for the web and Excel 2021, XLOOKUP has the following syntax:

XLOOKUP(lookup_value, lookup_vector, results_array, [if_not_found],
[match_mode], [search_mode])

This function seeks out a lookup_value in the lookup_vector and returns
the corresponding value in the results_array. Similar to RANDARRAY,
Microsoft again decided to make a change before pulling the pin and
make both of these functions Generally Available. The current line of
thinking is that there should be an error trap for when a value cannot be
found. Having said that, most of the time you will only require the first
three arguments:

¢ lookup_value: this is required and defines what value you want to
look up

lookup_vector: this reference is required and is the row or column
of data you are referencing to look up lookup_value

results_array: this is where the corresponding item is you wish
to return and is also required (even if it is the same as lookup_
vector). This does not have to be a vector (i.e. one row or one
column of cells): it may be an array (with at least two rows and
at least two columns of cells). The only stipulation is that the
number of rows / columns must equal the number of rows /
columns in the column / row vector — but more on that later

if_not_found: this optional argument allows you to replace
the usual return of #N/A with something more informative like an
alternative formula, text or a value

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

¢ match_mode: this argument is optional. There are four choices:
o 0: exact match (default)

o -1: exact match or else the largest value less than or equal to
lookup_value

o 1: exact match or else smallest value greater than or equal
to lookup_value

o 2:wildcard match. You should use the special character ? to
match any character and * to match any run of characters.

What'’s impressive, though, is that for certain selections of the
final argument (search_mode), you don’t need to put your data in
alphanumerical order! As far as | am aware, this is a first for Excel

¢ search_mode: this argument is also optional. There are again four
choices:

o 1:search first to last (default)
o -1:search last to first

o 2:whatis known as a binary search, first to last (requires
lookup_vector to be sorted). Just so you know, a
binary search is a search algorithm that finds the position
of a target value within a sorted array. A binary search
compares the target value to the middle element of the
array. If they are not equal, the half in which the target
cannot lie is eliminated and the search continues on the
remaining half, again taking the middle element to compare
to the target value, and repeating this until the target value
is found

o -2:another binary search, this time last to first (and again,
this requires lookup_vector to be sorted).

MVP
Microsoft®

Most Valuable
Professional

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought

Let’s have a look at XLOOKUP versus last month’s VLOOKUP:

B|C|D E F G H J K L M N
35
36 Example
7
35 Data
39
40
41 Graham 1333
42 Alice 1331
43 Mitch 1392
44 Wendy 1867
45 Xiu 3589
45 Brian 2364
47 Toby 3717
43
49
50 Solution
51
52 Student Xiu
53
54 XLOOKUP =XLOOKUP(HS2 F41:F47,G41.:G47)
55
56 VLOOKUP (3 args) =VLOOKUP(H52,F41-G47, COLUMNS(F39:G39))
57
58 VLOOKUP (4 args} =VLOOKUP(HB2,F41:G47, COLUMNS(F39:G38), FALSE)
59

You can clearly see the XLOOKUP function is shorter:
=XLOOKUP(H52,F41:F47,G41:G47)

Only the first three arguments are needed, whereas VLOOKUP requires both a fourth argument, and, for full flexibility, the COLUMNS function as
well. XLOOKUP will automatically update if rows / columns are inserted or deleted. It’s just simpler.

HLOOKUP has similar issues:

B|c|D|E F G " | J K L " N 0 P
7
8 Example
]
10 Data
11
12 Student [Graham | AMlice | Mitch [Wendy | Xiu | Brian | Toby |
13 ID No. [1233 | 1331 | 1392 [1867 | 2583 | 2364 | 3717 |
14
15
16 Solution
17
18 Student
19
20 XLOOKUP =XLOOKUP(H18.J12:P12.J13:P13)
21
22 HLOOKUP (3 args) 3717 =HIL OOKUP(H18,J12-P13 ROWS(i12:113))
23
24 HLOOKUP (4 args) =HLOOKUP(H18,J12:P13, ROWS(112:113), FALSE)
25
26
27 ID No. 1331
28
29 XLOOKUP =HLOOKUP(H2T, J13:P13,.12P12)
30
31 HLOOKUP No thank you Ha ha
kv

Here, this highlights what happens if | try to deduce the student name Indeed, things get even more interesting when you start considering
from the Student ID. HLOOKUP cannot refer to earlier rows, just as XLOOKUP’s final two arguments, namely match_mode and search_
VLOOKUP cannot consider columns to the left. Given any unused mode, viz.

elements of the table are ignored also, it’s just good news all round.

Goodbye limitations, hello XLOOKUP.

G25 - £ | =XLOOKUP(SGS521,51512:51516,5H$12:5H516,"Not Found",G$24,5F25)
1 C/DI|E F G H | J K 15 M N o P Q
E
10 Data
i
12 A 7
13 B 4
14 Cc 2
15 D 4
16 E 2
17
18
19 Solution
-2
-2 searchvalue[65 |
.22
23
24
25 Not Found B XL OOKUP(SGS.
26 Mot Found D A ot Found
27 Not Found E Not Found IALUE!
28 Mot Found B A (ALUE!
29

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Notice that | am searching the ‘Value’ column, which is neither sorted nor contains unique items. Do you see how the results have changed once

more, depending upon match_mode and search_mode?

Match Mode

-1 1 P
® Not Found B A Not Found
2 Not Found D A Not Found
5 Not Found E Not Found #VALUE!
3 Not Found B A #VALUE!

The match_mode zero (0) returns “Not Found” now instead of #N/A
because there is no exact match and the formula has now stipulated
what to do in such an instance.

When match_mode is -1, XLOOKUP seeks an exact match or else the
largest value less than or equal to lookup_value (6.5). That would be
4 — but this occurs more than once (B and D both have a value of 4).
XLOOKUP chooses depending upon whether it is searching top down
(search_mode 1, where B will be identified first) or bottom up (search_
mode -1, where D will be identified first). Note that with binary searches
(with a search_mode of 2 or -2), the data needs to be sorted. Itisn't -
hence we have garbage answers that cannot be relied upon.

With match_mode 1, the result is clearer cut. Only one value is the
smallest value greater than or equal to 6.5. That is 7, and is related to
A. Again, binary search results should be ignored, although it is worth
noting “Not Found” occurs when Excel identifies the lookup value has
not been found.

The match_mode 2 results are spurious. This is seeking wildcard
matches, but there are no matches, hence “Not Found” instead of N/A

Array

Row Vector

The array form of LOOKUP looks in the first row or column of an array for
the specified value and returns a value from the same position in the last
row or column of the same array:

LOOKUP(lookup_value, array)
where:

¢ lookup_value is the value that LOOKUP searches for in an array.
The lookup_value argument can be a number, text, a logical value,
or a name or reference that refers to a value

e array is the range of cells that contains text, numbers, or logical
values that you want to compare with lookup_value.

The array form of LOOKUP is very similar to the HLOOKUP and VLOOKUP
functions. The difference is that HLOOKUP searches for the value of
lookup_value in the first row, VLOOKUP searches in the first column,
and LOOKUP searches according to the dimensions of array.

If array covers an area that is wider than it is tall (i.e. it has more columns
than rows), LOOKUP searches for the value of lookup_value in the
first row and returns the result from the last row. Otherwise, LOOKUP

for the only search_modes that may be seen as creditable (1 and -1). It’s
interesting to note a binary search causes errors which are not trapped
by the new argument.

Clearly binary searches are higher maintenance. In the past, it was worth
investing in them as they did return results more quickly. However,
according to Microsoft, this is no longer the case: apparently, there is “...
no significant benefit to using (sic) the binary search options...”. If this is
indeed the case, then | would strongly recommend not using them going
forward with XLOOKUP.

Whilst XLOOKUP wins hands down against HLOOKUP and VLOOKUP, the
same cannot necessarily be said for LOOKUP. You may recall LOOKUP
has two forms: an array form and a vector form. As a reminder:

e an array is a collection of cells consisting of at least two rows and
at least two columns

® avector is a collection of cells across just one row (row vector) or
down just one column (column vector).

The diagram should be self-explanatory:

Column
Vector

searches for the value of lookup_value in the first column and returns
the result from the last column instead.

The alternative form is the vector form:

LOOKUP(lookup_value, lookup_vector, [result_vector])

The LOOKUP function vector form syntax has the following arguments:

¢ lookup_value is the value that LOOKUP searches for in the first
vector

¢ lookup_vector is the range that contains only one row or one
column

e [result_vector] is optional — if ignored, lookup_vector is used —
this is the where the result will come from and must contain the
same number of cells as the lookup_vector.

Like the default versions of HLOOKUP and VLOOKUP, lookup_value
must be located in a range of ascending values.

Let me demonstrate with an example:

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

B|C|IDIE[F G H J K L [l M o] P

62

63 Example

fid

65 Assumptions

66

87 Year 2020 2021 2022 2023 2024+

8 CPI 3% 4% 5% 5% 7%

69

70

71

72 LOOKUP Solution

72

T4 Year 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
75 CPI #MIA #MIA #MIA 3% 4% 5% 6% T% 7% 7%
76

77 =LOOKUP(GST4,SGS6T:SK568)

78

79

80 XLOOKUP Solution

21

82 Year 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
a3 CPI #NIA HNIA HNIA 3% 4% 5% fi% T% 7% 7%
24

a5 =XLOOKUP(GSE2 $GE67 SKS67. S5 568 5K568,-1)

a6

a7

28 LOOKUP with IF Solution

89

90 Year 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
91 CPIl 3% 2% 3% 3% 4% 5% 5% T% 7% 7%
92

93 =IF{G890=8GEE7 SG3E68 LOOKUP(GE90,8GE6T-SKE68))

ns

LOOKUP is a great function to use with time series analysis / forecasting. row for returning the corresponding value. Simple. As for XLOOKUP:
Dates are in ascending order and the LOOKUP syntax is remarkably simple. _ . .
As a modeller, | use it regularly when | am modelling many more forecast =XLOOKUP(G$82,5G$67:5K$67,5G$68:5K$68,-1)

periods than | want assumption periods. This formula is longer and requires two additional arguments (match_

Here, you can see | carry assumptions only for 2020 until 2024 (the final ~mode -1 is required to mirror the behaviour of LOOKUP). Indeed, given

value is 2024, just with a “+” in number formatting). The formula that an IF statement is required to ensure no errors for earlier periods, e.g.
=LOOKUP(G$74,$G$67:5K$68) =IF(G$90<$G$67,5G$68,LOOKUP(G$90,5GS$67:5K$68))
it may be argued that LOOKUP is a simpler function to use here than its

returns the corresponding value for the period that is either an exact
match or else the largest value less than or equal to the lookup_value.
LOOKUP uses the top row of the table for looking up its data and the final This isn’t the only time LOOKUP outperforms XLOOKUP:

counterpart.

B|C|D|E F G H J K L Il N

a7

aa Example
a9

100 Assumptions
101
102 mbers [N
103
104
105
106
107
108
109
110
111
112 Letter Chosen
113
114 Corresponding Number
115
116 LOOKUP =L OOKUP(H112,F105F109,G102:K102)
117
118 XLOOKUP #UALUE! =XLOOKUP(HT12.F105:F103,G102:K102)
118
120 XLOOKUP Correct =XLOOKUP(H112,F105°F108, TRANSFOSE(G102°K102))
191

m|o| 0| m|

Here, we do see a limitation of XLOOKUP. Whilst the third argument of XLOOKUP, results_array, does not need to be a vector, it cannot be the
transposition of the lookup_vector. You would have to transpose it using the TRANSPOSE function, for example. This makes LOOKUP much easier
to use — compare:

=LOOKUP(H112,F105:F109,G102:K102)
with
=XLOOKUP(H112,F105:F109,TRANSPOSE(G102:K102))
In this instance, LOOKUP wins.

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

XLOOKUP can be used to perform a two-way match, similar to INDEX MATCH MATCH:

B|C|D| E F G H
32
33 Example
34
35 Data
36
37 Exam Marks
38
39
40
41
42
43
44
45
46
47
48
49 Solution
50
51 swgent
52
53 Subject
54
55 Result
56
57 Alternative
58

Many advanced users might use the formula

=INDEX(H40:N46,MATCH(G53,G40:G46,0), MATCH(G51,H39:N39,0))

where:

¢ INDEX(array, row_number, [column_number]) returns a value
or the reference to a value from within a table or range (list) citing
the row_number and the column_number

¢ MATCH(lookup_value, lookup_vector, [match_type]) returns the
relative position of an item in an array that (approximately) matches
a specified value. It’s most commonly used with match_type zero
(0), which requires an exact match.

Therefore, this formula finds the position in the row for the student and
the position in the column of the subject. The intersection of these two
provides the required result.

XLOOKUP does it differently:
=XLOOKUP(G53,G40:G46,XLOOKUP(G51,H39:N39,H40:N46))

Welcome to the wonderful world of the nested XLOOKUP function! Here,
the internal formula

B|C|D|E F G

=XLOOKUP(G53,G40:G46, XLOOKUP(G51,H39:N39, HA0-N4E))

=INDEX{HA0-N4E, MATCH(G 53, G40:G46,0), MATCH(G51,H39:N35,0))

=XLOOKUP(G51,H39:N39,H40:N46)

demonstrates a key difference between this and your typical lookup
function — the first argument is a cell, the second argument is a column
vector and the third is an array — with, most importantly, the same number
of rows as the lookup_vector. This means it returns a column vector of
data, not a single value. This is great news in the brave new world of
dynamic arrays.

In essence, this means the formula resolves to

=XLOOKUP(G53,G40:G46,)40:146)

as J40:J46 is the resultant vector of =XLOOKUP(G51,H39:N39,H40:N46).
This is a really powerful — and virtually new — concept to get your head
around, that admittedly SUMPRODUCT exploits too. Once you understand
this, it’s clear how this formula works and opens your eyes to the power of
nested XLOOKUP functions.

| can’t believe | am talking about the virtues of nested functions here! Let
me change the subject quickly...

To show you how dynamic arrays can make the most of being able to
create resultant vectors, consider the following example:

62 Example

fid Data

75 Solution

i Quarter

749 Graham
80 Alice

81 Mitch 1,251
a2 Wendy 1,382
83 Xiu 1427
84 Brian 1,786
85 Toby 2491

1578
1,374

Lyl
1,498
1,616
1,567

2,439
1,063
1,250
1,211

=XLOOKUR{GTT I65LES5 I66:LT2)

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

The formula

=XLOOKUP(G77,165:L65,166:L72)

again resolves to a vector — but this time is allowed to spill as a dynamic array. Obviously, this will only work in Office 365, but it’s a very useful tool that
might just make you think it’s time to drop that perpetual licence.

Once you start playing with the dynamic range side, you can start to get imaginative. For example:

B|c|D|E F G H 1 J K L M N o P [+] R s
89
a0 Example
a1
9z Data
93
a4 Month Jan 19 Feb19 Mar19 Apr19 May19 Jun19 Jul19 Aug19 Sep19 Oct19 Nov19 Dec18
a5 Sales 6344 12929 3,632 4957
96
a7
98 Solution
99
100 Start Month
101 End Month
102
103 Total Sales =SUM(XLOGKUP(G 100, HI4:354 HI5:395) XL OOKUP(G101,H54 894, H95.595))
104

In this illustration, | want to calculate the sales between two periods:

Start Month Jul 19
End Month Oct18

Total Sales

from the |ER=ESE

This might seem like a simple drop-down list using data validation (ALT + D + L), but XLOOKUP has been used in determining the list to be used for the
end months.

Let me explain. | have hidden the range of relevant dates in cell H101 spilled across

% =XLOOKUP(G100,H94:594,H94:594):594

F G H I J K L]
Start Month Jul 19
End Month | Oct19 | Jul19l Aug19 Sep19 Oct19 Nov19 Dec19]

XLOOKUP can return a reference, so the formula

=XLOOKUP(G100,H94:594,H94:594):594

evaluates to the row vector N94:594 (since the start month is July). This spilled dynamic array formula is then referenced in the data validation:

Data Validation 7 *

Settings Input Message Error Alert

Validation criteria
Allow:
List - lgnore blank
Data: In-cell dropdown
between i
Source:
=5H5101#

I

|:| Apply these changes to all other cells with the same settings

Clear All Cancel

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

(You may recall SH101# means the spilled range starting in cell H101.) It
should be noted that the formula =XLOOKUP(G100,H94:594,H94:594):594
may not be used directly in the ‘Data Validation’ dialog, but this is a neat

Again, this uses the fact XLOOKUP can return a reference, so this formula
equates to

=SUM(N95:Q95)

trick to ensure you cannot select an end month before the start month
(assuming you are a rational human being that selects the start before

Easy! Now | am combining two XLOOKUP formulae with a colon (:) to
the end!).

form a range. This joins other illustrious functions used this way such as
CHOOSE, IF, IFS, INDEX, INDIRECT, OFFSET, SINGLE (@), SWITCH and TEXT.
First nesting, now joining — what’s next?

The formula to sum the sales then is

=SUM(XLOOKUP(G100,H94:594,H95:595):XLOOKUP(G101,H94:594,

H95:595)) Seeking partial matches (sounds like an unfussy dating agency!) suddenly

became a lot easier too. You can use wildcards if you want to —just set the
match_mode to 2:

B|C|D E

Example

Data

John
Jon

Jonathon 8

Johnny 16

Solution
Seleclion J?n*n*

LastResul

=XLOOKUP(G184,H1T4H179,1174:1179,,2)
=XLOOKUP(G184,H174:H179,174:1179, 2.-1)
Here, | am searching for J2n*n* - which is fine as long as you know what the wildcard characters mean:

* ? means “any character”, but just one character. If you wanted to make space for two and only two characters you would use ??

e * means “any number of characters’ —including zero.

”nou
’

For example, M?n*m* would identify “Manmade”, “minimum” and “Manikum” but would not accept “millennium”. Here, our formulae
=XLOOKUP(G184,H174:H179,1174:1179,,2)

=XLOOKUP(G184,H174:H179,1174:1179,,2,-1)

would locate the first and last items that satisfied the condition J2n*n* (i.e. “Jonathan” and “Jonny” respectively).

But what if you wanted an exact match with case sensitivity? You just have to think a little but outside of the proverbial box:

B|C|D|E F G H J K L M
139
140 Example
141
142| Data
143
14| Label Amount
145
146 Sum Product 2
147 SumProduct 4
148 Some Product 8
149 sumproduct 16
150| sumProduct 32
151 SumproducT 64
152| SumProduct 128
153
154 Different 512
155
156,
157 Solution
158
159 Selection
160
161 First Match =] —XLOOKUP(TRUE EXACT({H145-H154, G158) 145:1154)
162,
163 Last Match —XLOOKUP(TRUE EXACT(H145:H154,G158) 11451154, 1)
164

Here, we use another feature of XLOOKUP — its ability to search a virtual vector, i.e. one that has been constructed in memory, rather than physically
within the spreadsheet cells. Consider the formula

=XLOOKUP(TRUE,EXACT(H145:H154,G159),1145:1154)

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Here, the interim calculation =EXACT(H145:H154,G159), looks at the range H145:H154 and deduces whether the cells are an exact match for the
selection ‘Sum Product’ in cell G159. The EXACT function would evaluate as

{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE}

Therefore, the formula coerces to

=XLOOKUP(TRUE,{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE},1145:1154)

and then the formula becomes simple to understand.

Looking Up Data Revisited

With many of us currently “working from home” / quarantined, there are
only so Zoom / Teams calls and virtual parties you can make before you
reach your (data) limit. Perhaps they should measure data allowance
in blood pressure millimetres of mercury (mmHg). To try and keep our

readers engaged, we will continue to reproduce some of our popular Final
Friday Fix challenges from yesteryear in this and upcoming newsletters.
One suggested solution may be found later in this newsletter. Here’s this
month’s...

If you weren’t aware, it’s possible to make specific characters bold in a cell, without emboldening others. The same applies to italics, underline, and
so on. Therefore, you can create lines of text that look like this, quite easily.

The Challenge
This month’s challenge is likely to need a VBA solution just for a change! Can you find a way to extract and output just the bold characters from a cell?

Sound easy? Try it. One solution just might be found later in this newsletter — but no reading ahead!

Charts and Dashboards

It’s time to chart our progress with an introductory series into the world
of creating charts and dashboards in Excel. This month, we look at Radar
charts.

A Radar chart, also known as a Spider chart or a Web chart, shows
movements in data relative to both a central point and to the other
data points. Where a Line chart has a horizontal axis, the axis in a Radar
chart is effectively wrapped around so that each category becomes like
a spoke on a wheel. The length of each spoke which extends from the
centre of the chart to the outermost point on the chart represents the
vertical axis of a similar Line chart.

Department Evaluation Results

100%
75%
50%
25%
0%
- S B & e Lo o
; I~ 3 ﬁ"\‘& ("‘\L Qd)(\“'00 z'e(\
& & o i R e
< & o & < & y#
o < 0 $ ¥
e L;}a

—1E —2019

Let’s imagine that a company management were asked to provide input
about the performance of the company’s departments at the end of the
2018 and 2019 financial years. This information was collated to produce
a score for each department expressed as a percentage. The more
satisfied management were with a particular department, the higher
the percentage. This data could quite easily be used to produce a Line
chart, Bar chart or Column chart, but using a Radar chart gives a different
perspective on the results. Below is an example of how the same data
would look on a Line chart versus a Radar chart:

Department Evaluation Results

Transport
1008

75%

Sales & Marketing Warehousing

Accounting Processing

IT Support Customer Service

—T01E —2015

So how do we produce a Radar chart? First, prepare the data table. In the case of our example, we may list each department with their evaluation

percentages for 2018 and 2019:

Department Evaluation Results

Department
Transport
Warehousing
Processing
Customer Service
IT Support
Accounting
Sales & Marketing

2018 2019
B8% B4%
85% 95%
45% 72%
59% 78%
71% 62%
60% 69%
38% 69%

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Then, we highlight the data and the column headings (do not select the table heading) and go to the Insert tab on the Ribbon. The Radar chart is under
the last small icon along the top of the Charts section. Alternatively, we may click on the ‘Recommended Charts’ icon or the small arrow in the bottom
right of the Charts section, and then go to the ‘All Charts’ tab to locate the Radar Chart. There are just three variations for the Radar Chart:

o the first plots the data series using lines only
¢ the second variation maps the data series with lines and markers

e the third chart option fills the area within the shape created by each data series.

n"”n'

Waterfall

]

Funnel

=

Stock

e

ts

@ [=

34—

ﬂ{ﬂ@

s

Surface

2

Radar

R B

L“ More Stock Charts...

Please be aware of the limitations of using the filled Radar chart. It is
possible that the area covered by one data series on the Radar chart might
overlap data points from another series, meaning you cannot see the data
points underneath and therefore part of the area occupied by the second
series. If you are using the filled Radar chart, it is highly recommended that
you make the area partially transparent so you can see any data points and
area underneath each data series. Transparency is found by selecting the
data series, right click and choose ‘Format Data Series’, go to the Marker
section and under Fill there is an option to set the Transparency.

Also, it is important to note that by joining the data points with lines,
it can be interpreted that these data points may relate to each other,
but this may not be correct. With our example for instance, while the
data points representing the evaluation rating for each department are
joined together by lines, the score for one department has no bearing or
relationship to the score of the adjacent departments on the chart.

Using the department performance result data, our Radar Chart initially
looks like the following:

Chart Title

— 1018

2013

Transport

100%

Sales & Marketing

Warehousing

Accounting /] Processing

T Support

There are some changes we need to make:

Customer Service

¢ to move the legend below the chart, select the legend, right-click and choose ‘Format Legend’, then specify that you require the legend position

to be at the bottom of the chart

e we'd also like to see the 50% line on the graph. To achieve this, select the axis labels (by clicking on one of the 0% to 100% labels), right-click and
choose ‘Format Axis’, then under the ‘Axis Options’, change the Major setting under Units to 0.25 instead of 0.2. This will set the chart units to be

0%, 25%, 50%, 75% and 100%

e also, still within ‘Format Axis’, under the ‘Fill & Line” area (the bucket icon), we may add spoke lines by changing the lines to be solid and assigning

a colour to them

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

e The “rings” in the chart are the equivalent of the horizontal gridlines of the Line chart. To change the formatting for these gridlines, simply click
on one of the “rings”, right-click and choose ‘Format Gridlines’, and proceed to change the colour, width, type, etc.

Once we have applied all the formatting, the final chart looks similar to the following:

Department Evaluation Results

Transport
10058

Sales & Marketing Warehousing

Accounting Processing

IT Support Customer Service

—— 2018 ——2015

More next month...

Visual Basics

We thought we’d run an elementary series going through the rudiments of Visual Basic for Applications (VBA) as a springboard for newer users.
This month, we continue looking at using ListObjects to manipulate Tables within an Excel workbook in VBA, this time featuring the Totals Row.

Sometimes, tables don’t have totals rows. Let’s consider the following table:

Table Name: Summarize with PivotTable % D Properties
Table_BTDisco E‘a Remave Duplicates ==t Exp:: Open in Browser
'I::|' Resize Table % Convert to Range Slicer) REf:ESH Unlink
Properties Tools External Table Data
cs v £ || 10
A B 5 D E
1
2 |The World Starts Tonight 1977 10 0:37:02
3 |Natural Force 1978 10 0:38:18
4 |Diamond Cut 1979 10 0:35:01
5 |Goodbye to the Island 1981 10l 0:42:02
6 |Faster Than the Speed of Night 1983 9 0:43:14
7 |Secret Dreams and Forbidden Fire 1986 8 0:46:10
& |Hide Your Heart 1988 10 0:44:22
9 |Bitterblue 1991 14 0:58:40
10 |Angel Heart 1992 14 0:57:57
11 |Silhouette in Red 1993 15 0:54:22
12 |Free Spirit 1995 14 1:15:02
13 |Allin One Voice 1998 14 0:53:03
14 |Heart Strings 2003 13 0:56:56
15 |Simply Believe 2004 15 0:59:23
16 'Wings 2005 16 0:58:20
17 |Rocks and Honey 2013 14 0:51:14)
18

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

The Totals Row is easily found in the Table Menu here (or CTRL + SHIFT + T for you keyboard shortcut enthusiasts):

Table Tools

Cecile Help

Header Row [First Column
[] Total Row [] Last Column

Banded Rows [| Banded Colur

Table Style Option
Total Row (Ctrl+Shift+T)

Turn on or off the total row of the
tahle,

The total row is a row at the end of
the table which displays totals for
each column.

However, how can we do this in VBA? It is simply the ShowTotals property of the ListObject. This is a Boolean setting; if it is TRUE then the Total Row
is displayed (and you may switch it off by setting it to FALSE).

(General)

Cption Explicit

Sulk ShowTotals ()

Dim MyTakle As ListChject
Set MyTable = Range ("Table BTDisco").ListObject

MyTakle.ShowTotals = True

End Sub
Then the Totals Row appears:

A B C D E
1
2 |The World Starts Tonight 1577 10 0:37:02
3 Matural Force 1978 10 0:38:18
4 |Diamond Cut 1979 10 0:35:01
5 |Goodbye to the Island 1931 10 0:42:02
6 |Faster Than the Speed of Night 1983 9 0:43:14
7 |Secret Dreams and Forbidden Fire 1936 8 0:46:10
8 |Hide Your Heart 1988 10 0:44:22
9 |Bitterblue 1991 14 0:58:40
10 |Angel Heart 1992 14 0:57:57
11 |Silhouette in Red 1993 15 0:54:22
12 Free Spirit 1995 14 1:15:02
13 |All in One Voice 1998 14 0:53:03
14 |Heart 5trings 2003 13 0:56:56
15 | Simply Believe 2004 15 0:59:23
16 |Wings 2005 16 0:58:20
17 |Rocks and Honey 2013 14 0:51:14
18 [Total | 16] -
19

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Notice how it has put a formula in the last column which is the default setting of showing the totals row:

=SUBTOTAL(103,[Album Length])
Why? Excel makes a rough judgment about which of the SUBTOTAL functions it would like to use and in this case has chosen 103 — COUNT.

Sometimes it doesn’t use the right one. To edit the Totals Row, you could very easily edit it by using the TotalsRowRange property of ListObject.
Let’s delete the word “Total” in the row.

(General)

Cption Explicit

Sulk TotalsRowDelete ()

Dim MyTakle &Zs ListCkhject
Set MyTable = Range ("Table BTDisco™).ListObject

MyTakle.TotalsRowRange.Cells(l, 1) .Clear

End Sub

It then results in the following (as expected):

Album Title n Year Released ﬂ Number Of Songsn Album Length |

|The World Starts Tonight 1977 10 0:37:02
| Matural Force 1978 10 0:33:18
] Diamond Cut 1979 10 0:35:01
|Goodbye to the Island 1981 10 0:42:02
|Faster Than the Speed of Night 1983 9 0:43:14
|Secret Dreams and Forbidden Fire 1986 8 0:46:10
|Hide Your Heart 1988 10 0:44:22
|Bitterblue 1991 14 0:58:40
|Angel Heart 1992 14 0:57:57
|Silhouette in Red 1993 15 0:54:22
|Free Spirit 1995 14 1:15:02
|All'in One Voice 1998 14 0:53:03
|Heart Strings 2003 13 0:56:56
|Simply Believe 2004 15 0:59:23
|Wings 2005 16 0:58:20
Rocks and Honey 2013 14 0:51:14
16,

You might wish to populate the Totals Row with calculations. This is using the index or by the header. Then, we use the TotalsCalculation
done using the ListColumns method of ListObject. Although ListColumns method to change the calculation in the row. The following calculations
hasn’t been covered in detail in previous articles, it’s straightforward. may be used:

Columns in a table may be referred to by the ListColumns property by

101 AVERAGE Average x|TotalsCalculationAverage
102 COUNTA Count Numbers x|TotalsCalculationCountNums
103 COUNT Count xITotalsCalculationCount
104 MAX Max x|TotalsCalculationMax
105 MIN Min x|TotalsCalculationMin
106 PRODUCT Product
Standard Deviation
107 STDEV.S/STDEV Sample x|TotalsCalculationStdDev
Standard Deviation
108 STDEV.P Population
109 SUM Sum x| TotalsCalculationSum
110 VAR Variance x| TotalsCalculationVar

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Using this table:

(General) | [TotalsRowFormula

Option Explicit
Sub TotalsRowFormula ()

Dim MyTable As ListObject
Set MyTable = Range("Table BTDisco") .ListObject

'Referring to column by index number
MyTable.ListColumns(2) .TotalsCalculation = xlTotalsCalculationMin

'Referring to column by index number
MyTable.ListColumns ("Number of Songs"™).TotalsCalculation = xlTotalsCalculationAverage

End Sub

Album Title Bl vear Released [l Number Of songs Bl Album Length
The World Starts Tonight 1977 10 0:37:02
Natural Force 1978 10 0:38:18
Diamond Cut 1979 10 0:35:01
Goodbye to the Island 1981 10 0:42:02
Faster Than the Speed of Night 1983 9 0:43:14
Secret Dreams and Forbidden Fire 1986 8 0:46:10
Hide Your Heart 1988 10 0:44:22
Bitterblue 1991 14 0:58:40
Angel Heart 1992 14 0:57:57
Silhouette in Red 1993 15 0:54:22
Free Spirit 1995 14 1:15:02
Allin One Voice 1998 14 0:53:03
Heart Strings 2003 13 0:56:56
simply Believe 2004 15 0:59:23
|wings 2005 16 0:58:20
Rocks and Honey | 2013 14 0:51:14
1977 12.25 16,

Notice that SUBTOTAL functions 106 and 108 are not available in the VBA Syntax. However, there are two further TotalsCalculations that are
available: x/TotalsCalculationNone which is identical to clearing the cell and xITotalsCalculationCustom, which doesn’t appear to do much at all.

[(Generan | [TotalsRowFormula

Option Explicit
Sub TotalsRowFormula()

Dim MyTable As ListObject
Set MyTable = Range("Table BTDisco").ListObject

ng to column by index number
ListColumns (2) .TotalsCalculation = x1TotalsCalculationNons

ng to column by index number
MyTable.ListColumns ("Number of Songs").TotalsCalculation = xlTDtalSﬁalculatianﬁust::ml

End Sub
c18 - J =0
E

1

2 The World Starts Tonight 1977 10 0:37:02
3 | Natural Force 1978 10 0:38:18
4 Diamond Cut 1979 10 0:35:01
5 Goodbye to the Island 1981 10 0:42:02
& Faster Than the Speed of Night 1983 9 0:43:14
7 Secret Dreams and Forbidden Fire 1986 8 0:46:10
8 Hide Your Heart 1988 10 0:44:22
9 Bitterblue 1991 14 0:58:40
10 Angel Heart 1992 14 0:57:57
11 Silhouette in Red 1993 15 0:54:22
12 Free Spirit 1995 14 1:15:02
13 Allin One Voice 1998 14 0:53:03
14 Heart Strings 2003 13 0:56:56
15 Simply Believe 2004 15 0:59:23
16 Wings 2005 16 0:58:20
17 Rocks and Honey | 2013 14 0:51:14
18 [0|~ 16,
19

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

xITotalsCalculationCustom just puts a =0 for the formula, which is not very helpful. However, what if you wanted to calculate the average song
length? Let’s use an array formula using the AVERAGE function as follows:

{=AVERAGE(Table_BTDisco[Album Length]/Table_BTDisco[Number Of Songs])}
So how could this be achieved?

The TotalsRowRange could be used as above, but ListColumns also has a method Total, which allows access to the Totals Range for that particular
column. Let’s use ArrayFormula to put the formula in the Album Length column and change the number format to show minutes and seconds.

[(General) =] [Teu

Option Explicit

Sub TotalsRowFormula ()

Dim MyTable As ListObject
Set MyTable = Range("Table BTDisco").ListObject

MyTable.ListColumns ("Album Length").Total.FormulaArray = _
"=AVERAGE (Table BTDisco[Album Length]/Table BTDisco[Number Of Songs])"
MyTable.ListColumns ("Album Length™) .Total.NumberFormat = "mm:ssﬂ

End Sub

1

2 The World Starts Tonight 1977 10 0:37:02
3 Matural Force 1978 10 0:38:18
4 Diamond Cut 1979 10 0:35:01
5 Goodbye to the Island 1981 10 0:42:02
6 Faster Than the Speed of Night 1983 9 0:43:14
7 Secret Dreams and Forbidden Fire 1986 8 0:46:10
8 Hide Your Heart 1988 10 0:44:22
9 Bitterblue 1991 14 0:58:40
10 Angel Heart 1992 14 0:57:57
11 Silhouette in Red 1993 15 0:54:22
12 Free Spirit 1995 14 1:15:02
13 Allin One Voice 1998 14 0:53:03
14 Heart Strings 2003 13 0:56:56
15 Simply Believe 2004 15 0:59:23
16 Wings 2005 16 0:58:20
17 Rocks and Honey 2013 14 0:51:14
18|) | o 04:11,

More next time.

o o L]
Power Pivot Principles
. . . . Measure ? *
We continue our series on the Excel COM add-in, Power Pivot. Calculated column
This month, we revisit calculated columns in Power Pivot. Tablename: |Customer e
e Measure name: [New Measure

Calculated columns perform a calculation for every individual o Dencriokce

row in a given table, whereas a measure is only calculated 0 Formia: 73] [[Chek temia

for the filtered, aggregated cells that are used in a PivotTable ﬁ:: J

or a PivotChart; because of this, the formula in a calculated 4655

column can be more resource intensive than a formula used = VS

in a measure.].5:05 Formatting Options:

Forinstance, a calculated column in a table with a million rows ”‘Ti C:

will always have to calculate one million results. A PivotTable 15 e,

will generally have filters and slicers culling the reporting M_:: L

table to much less than one million rows. Furthermore, any 445 -

measure is only calculated for the subset of data in each cell k) oK Cancel

in the PivotTable.

Also, note that if a formula in a calculated column has
dependencies on object references, such as other columns
and other expressions, the calculated column at the end of
the dependency cannot be evaluated until all of the other
columns have been evaluated. Updating data will cause the
entire dependency chain to refresh. This may slow down
the responsiveness of the model if there are too many
dependencies built into the model.

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Keeping these points in mind, unless it is absolutely necessary we should
stick to creating measures rather than calculated columns when we can.
If multiple calculated columns are needed, we recommend the following:

e step out any formula that contain multiple dependencies, with
results saved to columns so that we are able to validate the results
and evaluate any impacts on performance

Power Query Pointers

e a little more controversially, if updating data with numerous
calculated columns with interdependencies, you might wish
to consider setting the (re)calculation mode temporarily to
manual. Remember to switch the mode back to automatic after
updating though.

More Power Pivot Principles next month.

Each month we’ll reproduce one of our articles on Power Query (Excel 2010 and 2013) / Get & Transform (Office 365, Excel 2016 and 2019) from
www.sumproduct.com/blog. If you wish to read more in the meantime, simply check out our Blog section each Wednesday. This month, look at how

to transform extracted data into a useful table.

Regular readers will be familiar with our fictional salespeople and their tendency to supply data in the wrong format. Let’s meet John.

[Blog 67 - Moving Date - Excel kathryn newitt
Insert Pagelayout Formulas Data Review View Developer Help Power Pivot
% Cut B - = = j &= Ex [T X AutoSum - A.
Calibri 1 A A = - [EPWrapText General] g €= BX gl = Y

Ba Copy ~ 2 B OEH g z

L i BIU- HeA- === =5 SMergesCenter - T~ % 9 359 Conditional Formatas Cell Insert Delete Format . Sot&Find&

¥ Format Painter - A~ SSSEE Bves ° D e b Sy = = @ e Sobae

Clipboard 5 Font 5 Alignment n Number 3 Styles Cells Editing ~
A2 fc' | My Expenses for Last Week v

A B c D E F G H 1 J K L M N o P Q R s -
1
2 [My Expenfes for Last Week
3
4 Date 17/12/2017
5
6 Petrol Lunch Hotel Dinner
7 25 15 100 50
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24 -

Sheet1 | Sheet2 | (® <« »

Ready 15 H e om- + + 100%

Blog 67 - Moving Date - Excel kathryn newitt B
Data Review View Developer PowerPivot Q) Tell me what you want to do 8 share
) oo e
‘hééz:;y) Calibri 11 2 Wrap Text General :Ei‘ I D \“:4 = EE]X s %:ﬁ‘f’s“m N QY 8
: <o 00 i
Poste i B U T S Merge & Center ~ T~ % 3 %358 éﬁ;;&;?-a::sfssézsv Insert Delte Format . i:?l:r&'(:sr]‘sdsi
Clipboard 5 Font J Alignment = Number r. Styles cells Editing ~
A1 fe | Date v
A B c D E F G H 1 J K L M N o P Q R s [~
1 [Date IExpense Type Amount
2 17/12/2017 Petrol 25
3 17/12/2017 Lunch 15
4 17/12/2017 Hotel 100
5 17/12/2017 Dinner 50
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24 -
Sheet1 | Sheet2 | Sheet3 | Sheet4 ® < »
Ready 13 H =5 @ - '] + 100%

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/blog

To start the process, let’s extract John’s data into Power Query:

Hd - Blog 67 - Moving Date - Excel kathryn newitt [T

Fle Home Insert Pagelayout Formulas Review View Developer Help PowerPivot Q) Tell me what you want to do Q. share

B r [~IShow Queries Fﬁ, [#] Connections é. Y Ep=Consolidate 3 d roup ~ [Data Analysis
‘ gl 154 BERemove Duplicates = & 58 Ungroup ~
i QS:{";« e | RL Sort Al @ anced | (ot© £ Data Valdation ~ [} Manage Data Model A‘ﬂ;:;y Foreast i subtotal
Get & Transform Connections Sort & Filter Data Tools Forecast Outline 3 Analysis ~
a2 - || From Table ses for Last Week 5
Create anew query linked to the
A selected Excel table. E F G H | J K L M N o P Q R s -
1
2 i enie |
table,
4 |pate i)
5
6 |Petrol Lunch Hotel Dinner
7 25 15 100 50|
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24 -
Sheet1 | Sheet2 | (¥ « »
Ready 3 Average: 86552 Count 11 Sum:43276 | [o - + + 100%

We may select the data and use ‘From Table’ on the ‘Get and Transform’ section of the ‘Data’ tab. Our data will be converted to a Table as part of
the process.

| © Table1 - Query Editor

“ Home = Transform AddColumn View (2]

St ”‘ [Properties =] Y, WX 4| | DataType: Any ~ {55 Merge Queries ~ = ’—L [New Source ~
ol Le Bl X HEEHH g = 8

[Advanced Editor [T Use First Row as Headers * "% Append Queries ~

3
Closea Refresh N hoose Remove Keep Remove Split Group o Manage Data source
Load~ Preview~ £-1 Manage Columns~ Columns ™ Rows~ Rows~ Column~ By 2 Replace Values CombineFiles parameters~ settings
Close Query Manage Columns ~ Reduce Rows Sort Transform Combine Parameters Data Sources New Query
> fc || = Table.TransforncolumnTypes (Source, {{"Column1®, type any}, {"Column2", type any}, {"Column3”, type any}, {"Columna”, type Query Settings x
[, |55 column1 ~ |55 Column2 ~ |55 column3 |~ {55 columna |~
% || 1 [My Expenses null ERECUERTIES
5 1 Name
Sl null
<]
3 |pate 17/12/2017 00:0 AL
4 null All Properties
5 |Petrol Lunch Hotel
_ 4 APPLIED STEPS
6 25 15 100 50

Source
X Changed Type

4 COLUMNS, 6 ROWS PREVIEW DOWNLOADED AT 13:44

The first two rows are not useful, so our first step is to remove them using the ‘Remove Rows’ option in the ‘Reduce Rows’ section.

“ Home = Transform AddColumn View (2]

S‘ [Properties Data Type: Any ~ Merge Queries ~ = ’—‘ [New Source ~
= [z Advanced Editor i v as Headers ~ Append Queries ~ = [Recent Sources ~
Closes Fefresh 1 . Choose Remove Keep Remove Split Group) Manage Data source
Load~ Preview~ £ Manage @I @IS | R R Column= By Replace Values CombineFiles pyrameters~ settings
Close Query Manage Columns Reduce Rows Sort Transform Combine Parameters Data Sources New Query
> Jfi_|| - vable. ransforncolumTypes(source, {{"Colum1”, type any}, {"colum2", type any}, {"columa", type any}, {"columa’, tyre v || Query Settings x
7. |85 column1 ~]/#5 columnz <]/ #55 columns <55 columna [~
2 1 |My Expenses for La: null 4 PROPERTIES
g [null Name
(o} bl
3 |pate 17/12/2] ” Table1
4 nu1l N All Properties
5 |etrol Lunch Remove Top Rows
> 4 APPLIED STEPS
6 5

Specify how many rows to remove from the top. .
ource

Number of rows X Changed Type

12 - |2
12 Decimal Number
Parameter

New Parameter Cancel

4 COLUMNS, 6 ROWS PREVIEW DOWNLOADED AT 13:44

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

We also remove the row of null values beneath our ‘Date’ row by removing blank rows.

We could remove them based upon a parameter, but we just want to get rid of the first two rows so let’s choose the ‘Decimal Number’ option.

[x3] Table1 - Query Editor

Transform Add Column

View
DAY [Properties L) 1 o DataType:Any ™ [Merge Queries ~ = & [New Source »
= e X HHHH gz 1Mh =g = g)
®7 [Advanced Editor &l [Use First Row as Headers ~ Append Queries ~ Recent Sources
Closes Refresh -y . Choose Remove Keep Remove Split Group , B} Manage Data source
Load ™ Preview - (- Manage Columns ~ Columns = Rows~ Rows~ Column~ By 2 Replace Values neFles parameters+ settings
Close Query Manage Columns Reduce Rows Sort Transform Combine Parameters DataSources New Query
> fx || = Table.selectRows(#"Removed Top Rows”, each not List.IsEmpty(List.RemoveMatchingItems(Record.Fieldvalues(), {"", null}))) ~ Query Settings X
[T, |85 Column1 ~ |45 column2]/ 155 columns [~ |45 columna [~
g |[1 |pate 17/12/2017 null null EUEECEERTIES
g [|eetro1 Lunc Hotel Dinner N
CJ >) P Table'
3 25 15 100 50
All Properties

4 APPLIED STEPS
Source
Changed Type
Removed Top Rows
X Removed Blank Rows

4 COLUMNS, 3 ROWS

PREVIEW DOWNLOADED AT 13:49

We want to create a column from the Date cell. The first step to achieving this is to right-click on the Date cell and use the option to ‘Add as New
Query’. This creates a new query in the queries panel on the left of the screen.

x5 Table1 - Query Editor

Transform Add Column

X
View o
P X E 2 Properties Y, X 4] I Data Type: Any ~ (55 Merge Queries ~ g [7 New Source
& = = N
= & [Advanced Editor X HH z [[Use First Row as Headers = %" Append Queries =) [Recent Sources =
Closes. Refsh . Choose Remove Keep Remove Split Growp ~ , Manage Data source
Load~ Preview~ - Manage Columns ~ Columns ™ Rows ™ Rows ™ Column~ By 2 ReplaceValues Combinekiles Parameters¥ settings
Close Query Manage Columns Reduce Rows Sort Transform Combine Parameters Data Sources. New Query
s 2] < fr || = Table.selectRows (#"Removed Top Rows”, each not List.TsEmpty(List.RemoveMatchingTtems v Query Settmgs x
£ Tablet
- . |15 column1 ~ |15 columnz <25 columns |~ [455 columna [~
#p @olinni 49 | pate 17/12/2017 00:00.. u1l 4 PROPERTIES
2 |petrol Lunch | oB Copy Dinner M
3 25 Y Filters v po 50 Table’
Drill Down All Properties
Add as New Query

4 APPLIED STEPS
Source
Changed Type
Removed Top Rows
X Removed Blank Rows

4 COLUMNS, 3 ROWS

PREVIEW DOWNLOADED AT 14:16

The new query, automatically called ‘Column2’, includes our earlier source steps and the value in the top row of Column2 — the date.

@

TextTools Column2 - Query Editor X
Home Transform AddColumn View Transform (]
] \ r ", 5 Bxtract ~
G dhwag
s Parse ~
T split Format
Table™ Text
Convert Transform
e < fc || = #"Removed Blank Rows"{e}[column2] v
(0 uery Settings X
[Tablet Query ©
17/12/2017 00:00:00
2 column2

4 PROPERTIES
Name

Column2

Al Properties

4 APPLIED STEPS
Source
Changed Type
Removed Top Rows
Removed Blank Rows
X Column1

READY

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Having created this query, we need to make sure the next steps we add are to the ‘Table1l’ query. Now we may transform the rest of the data to
appear in the format that we would like.

Table1 - Query Editor

g %
Transform | Add Column View)
= 05 £Branspose DataTyperAny~ Ly Replace Values = G Unpivot Columns -
o [Reverse Rows 7 Detect Data Type &) Fill~ 2 hove ~ B3
€ty Uy oo oo - @ . st Format Statistics Standard Scientific Date Time Duration
By asHeaders~ Column= + - EE
Table Text Column Number Date & Time Column Structured
Queries [2 < fe || = Table.unpivotothercolumns (#"changed Type1”, {}, "Attribute”, "value") ¥|| Query Settings x
3 Tablet B B
. [# Aurbute [~]12 value -
B Column2 = = 4 PROPERTIES
2 |tunch 15 Name
3 |Hotel 100 abl
4 |pinner 50 All Properties

4 APPLIED STEPS

Source
Changed Type
Removed Top Rows
Removed Blank Rows
Removed Top Rows1
Promoted Headers
Changed Type1

X Unpivoted Columns

2 COLUMNS, 4 ROWS PREVIEW DOWNLOADED AT 1419

The steps we have taken are:

1. Removed Top Rows1: having moved the date to a separate query, we could remove the ‘Date’ row

2. Promoted Headers: since we wanted to just keep my expense types and values, we promoted the expense to headers to get rid of the

generic Columnl etc. (the ‘Changed Typel’ step was an automated Power Query step)

Unpivoted Columns” we didn’t want to keep our expense types as headers; we ultimately want to store them in a column under the heading
‘Expense Type’, so we unpivoted to get the data as it is shown (above).

Now all that remains is to rename our columns and add a Date column. To do this, we will add a custom column.

Duplcate Columy sattics Sandord SGTE) formation~ 04 TITe Puaten
General From Text From Number From Date & Time
Queries [2 < fx X [¥1| Query Settings X
! et A Expense T| - Slumr
"_:‘; Column2 E‘L k;t::] Custom Column 4 PROPERTIES
S New column name Name
3 Date Tablef
7 Custom column formula; Available columns: All Properties
=column2] Expense Type
Amount 4 APPLIED STEPS
Source
Changed Type
Removed Top Rows
Removed Blank Rows
Removed Top Rows1
Promoted Headers
<<msert Changed Type1
Learn about Power Query formulas Unpivoted Columns
X Renamed Columns.
/' No syntax errors have been detected

2 COLUMNS, 4 ROWS PREVIEW DOWNLOADED AT 1419

Having referenced the other query (which is easy to check as | can see it in the left-hand pane), we click ‘OK’.

| @~ < Tablel - Query Editor

X

- p= [Conditional Column ' = D
E A e L
EE index Golumn = s s i)
Column From Custom Invoke Custom Format Statisics Standard Sciniific Date Time Duration
EBxamples ™ Column Function 1] Duplicate Column - < B B Informatio : " :
General From Text From Number From Date & Time.
Queries [2 < fr || = Table.Addcolumn(#"Renamed Columns”, "Date”, each Column2) v
7 Tablet

Query Settings

. |A% ExpenseType | ~||1.2 Amount
% e 1 |petzol 4 PROPERTIES
N
2 fn‘ve
3 ablef
1 All Properties

4 APPLIED STEPS

Source
Changed Type
Removed Top Rows
Removed Blank Rows
Removed Top Rows1
Promoted Headers
Changed Typet
Unpivoted Columns
Renamed Columns

X Added Custom

3 COLUMNS, 4 ROWS PREVIEW DOWNLOADED AT 1421

The date appears as a new column.

More next month!

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Power Bl Updates

January always seems to be a relatively quiet month down at Power BI HQ. As at the time of writing, no new features have been announced —so do
watch out for our next newsletter which will probably have double the fun if history were to repeat itself.

More next month, we’re sure!!

The A to Z of Excel Functions: IF

So what’s the most Important Function in Excel? Did you realise that’s
what IF is an abbreviation for? Not surprising as | just made it up.
However, there is some truth in the jest. The syntax for IF demonstrates
just how useful this function is for financial modelling:

=IF(logical_test, [value_if_TRUE], [value_if_FALSE])

This function has three arguments:

¢ logical_test: this is the “decider”, that is, a test that results in a
value of either TRUE or FALSE. Strictly speaking, the logical_test
tests whether something is TRUE; if not, it is FALSE

e value_if_TRUE: what to do if the logical_test is TRUE. Note that you
donot putsquare bracketsaroundthisargument. Thisis just the Excel
syntax for saying sometimes this argument is optional. If this
argument is indeed omitted, this argument will have a default value
of TRUE

e value_if_FALSE: what to do if the logical_test is FALSE (strictly
speaking, not TRUE). If this argument is left blank, this argument
will have a default value of FALSE.

This function is actually more efficient than it may look at first glance.
Whilst the logical_test is always evaluated, only one of the remaining
two arguments is computed, depending upon whether the logical_test
is TRUE or FALSE.

Care should be taken with logical tests as this is the source of many,
many errors in spreadsheets. Logical tests assess the criterion/criteria
stipulated, no more no less. It assumes a binary universe: X and
NOT(X). This isn’t always how our minds think, as | will explain with an
exaggerated example.

Intrepid explorer Ivor Challenge is lost in the jungle and needs to find
shelter for the night as a rainstorm beckons. Immediately ahead is a
clearing with two caves. He writes a formula to determine which cave
to sleepin:

=IF(Cave 1 has a bear, sleep in Cave 2, sleep in Cave 1).

The logical_test is to check whether Cave 1 contains a bear. As it turns
out, it doesn’t so he sleeps in there and is mauled to death by the lioness
who was in there.

Next day, his wife, Cher Challenge, goes searching for him, gets tired and
comes across the same caves and uses the same formula to determine
which cave to sleep in:

=IF(Cave 1 has a bear, sleep in Cave 2, sleep in Cave 1).

The logical_test is to check whether Cave 1 contains a bear. As it turns
out, this time there is (together with some human bones) and so she
sleeps in Cave 2 and is eaten by the other bear.

When using IF formulas, you need to train yourself to think logically
like a computer. Common sense does not apply. Consider the logic
function NOT(expression), which is everything that is not equivalent to

the expression. The opposite of a boy is “not a boy”: “girl” is incorrect.

Take care with inequalities in particular. The opposite of x is greater
than y is either x is less than or equal to y, or NOT(x is greater than y).
This is a common error and it has caused embarrassing mistakes time
and time again in business.

Returning to the IF function, let’s consider an example:

Je =IF{Denominator=0,,Mumerator/Denominator)
D E F G H I
Numerator 3
Denominator -
Decimal | - _l

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

In this example, the intention is to evaluate the quotient Numerator /
Denominator. However, if the Denominator is either blank or zero, this
will result in an #DIV/0! error. Excel has several errors that it cannot
evaluate, such as #REF!, #NULL, #N/A, #Brown, #Pipe. OK, so one or two
of these | may have made up, but prima facie errors should be avoided
in Excel as they detract from the key results and cause the user to doubt
the overall model integrity. Worse, in some instances these errors may
contribute to Excel crashing and/or corrupting.

This is where IF comes in. In my example above,

=IF(Denominator=0,,Numerator/Denominator)

tests whether the Denominator is zero. This is the conditional formula. If
so, the value is unspecified (blank) and will consequently return a value
of zero in Excel; otherwise, the quotient is calculated as intended.

The A to Z of Excel Functions: IFERROR

#N/A

'ERRO

#DIV/0!

#NAME?

This type of conditional formula is known as creating an error trap. Errors
are “trapped” and the ‘harmless’ value of zero is returned instead. You
could put “n.a” or “This is an error” as the value_if_TRUE, but you get
the picture.

Itis my preference not to put a zero in for the value_if_TRUE: personally,
I think a formula looks clearer this way, but inexperienced end users may
not understand the formula and you should consider your audience
when deciding to put what may appear to be an unnecessary zero in a
formula. The aim is to keep it simple for the end user.

An IF statement is often used to make a decision in the model:

=IF(Decision_Criterion=TRUE, Do_it, Don’t_Do_It)

This automates a model and aids management in decision making and
what-if analysis. IF is clearly a very powerful tool when used correctly.

#NULL!

H#REF!

IFERROR first came into being back in Excel 2007. It was something users had asked Microsoft for, for a very long time. But let me go back in time

first and explain why.

At the time of writing, there are 12 IS functions, i.e. functions that give rise to a TRUE or FALSE value depending upon whether a certain condition is

met:

ISBLANK(Reference): checks whether the Reference is to an empty cell
2. ISERR(Value): checks whether the Value is an error (e.g. #REF!, #DIV/0!, #NULL!). This check specifically excludes #N/A

w

functions in financial modelling
ISEVEN(Number): checks to see if the Number is even

W N UL A

ISNUMBER(Value): checks whether the Value is a number

ISERROR(Value): checks whether the Value is an error (e.g. #REF!, #DIV/0!, #NULL!). This is probably the most commonly used of these

ISFORMULA(Reference): checks to see whether the Reference is to a cell containing a formula

ISLOGICAL(Value): checks to see whether the Value is a logical (TRUE or FALSE) value

ISNA(Value): checks to see whether the Value is #N/A. This gives us the rather crude identity ISERR + ISNA = ISERROR
ISNONTEXT(Value): checks whether the Value is not text (N.B. blank cells are not text)

10. 1ISODD(Number): checks to see if the Number is odd. Personally, | find the number 46 very odd, but Excel doesn’t

11. ISREF(Value): checks whether the Value is a reference
12. ISTEXT(Value): checks whether the Value is text.

You get the idea. As mentioned previously, sometimes you need to trap errors that may originate from a formula that is correct most of the time.
Where possible, you should be specific with regard to what you are checking, e.g.

=IF(Denominator=0, Error_Trap, Numerator / Denominator)

In this example, | am checking to see whether the Denominator is zero. | could use this formula instead:

=IF(ISERROR(Numerator / Denominator), Error_Trap, Numerator / Denominator)

The difference here is that this will check for anything that may give rise to an error:

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Fe =IF(ISERROR|Numerator/Denominator),"kebab",Numerator/Denominator)

D E F G H I J K
Numerator Dog
Denominator 4

Decimal | Kebab .I

Do you see the problem here? | have to put the same formula in twice. If that is a long formula, then the calculation becomes doubly long. This is
where IFERROR comes in; it halves the length of the calculation but still achieves the same effect

=IFERROR(Calculation, Error_Trap)

Essentially, this formula is the bastard lovechild of IF and ISERROR. It checks to see whether the Calculation will give rise to a prima facie error. If it
does, it will return Error_Trap; otherwise, it will perform the said Calculation, e.g.

J =IFERROR({Mumerator/Denominator,"Kebab")
D E F G H
Numerator Dog

Denominator 4

Decimal | Kebab _I

You shouldn’t just sprinkle IFERROR throughout your models like your Calculation gives rise to an error. If it does, the Error_Trap will be
formulae are confetti. Used unwisely, IFERROR can disguise the fact that referenced in the usual way, but if not a Different_Calculation (not the
your formula isn’t working correctly and that modifications to the logic Calculation used for the test) will be computed.

b ired. Tryt it ingly.
may be require ryfouse It sparingly These two methodologies should be mastered. You will create more

Sometimes you have to use IF and ISERROR in combination anyway: robust and flexible models once your error become a thing of the past.
Not just the model — but your own expertise — will become more trusted
in your organisation if users never encounter prima facie errors in your
model.

=IF(ISERROR(Calculation), Error_Trap, Different_Calculation)

In this example, the formula is checking to see whether a particular

The A to Z of Excel Functions: IFNA

N, A

-2

!1 Sorn_.,, this page

' is not available

[

- WS
The IFNA function returns the value you specify if a formula returns the #N/A error value; otherwise it returns the result of the formula.
IFNA has the following syntax:
IFNA(value, value_if_NA)
 value: this is required and represents the argument that is checked for the #N/A error
¢ value_if_NA: this is also required. This is the value to return if the formula (value) evaluates to the #N/A error value.
It should be noted that:

o if value or value_if_NA is an empty cell, IFNA treats the argument(s) as an empty string value ("")

o if value is an array formula, IFNA returns an array of results for each cell in the range specified in value.

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Please see our example below.

A B [
1
2 Anna 68%
3 Boris 92%
4 Charlie 59%
5 Dee 7%
6
7
8 Mark
9
10
Looks up name "Mark" (cell A8} in the range A2:AS5,
and determines this name is not in the list. This
=IFNA(VLOOKUP(A8,A2:B5,2,FALSE), "Not located. ") y . _ Not located.
would normally give rise to an #N/A error, but the
11 error trap, "Not located.”, is returned instead

12

The A to Z of Excel Functions: IFS

As a model developer and reviewer, | must confess | remain unconvinced
about this one. If you have ever used a formula with nested IF statements
beginning with

=IF(IF(IF...

then maybe this next function is for you — however, if you have ever
written Excel formulas like this, then maybe Excel isn’t for you! There are
usually better ways of writing the formula using other functions.

Office 365 and Excel 2019 in all its variants has the relatively new function
IFS. The syntax for IFS is as follows:

IFS(logical_test1, value_if_truel, [logical_test2, value_if_true2],
[logical_test3, value_if_true3],...)

where:
* logical_testl is a logical condition that evaluates to TRUE or FALSE

¢ value_if_truel is the result to be returned if logical_test1
evaluates to TRUE. This may be empty

¢ logical_test2 (and onwards) are further conditions that evaluate
to TRUE or FALSE also

¢ value_if_true2 (and onwards) are the respective results to be
returned if the corresponding logical_test evaluates to TRUE. Any
or all may be empty.

Since functions are limited to 254 arguments (sometimes known as
parameters), the IFS function can contain 127 pairs of conditions and
results.

One thing to note is that IFS is not quite the same as IF. With the IF
statement, the third argument corresponds to what do if the logical_
test is not TRUE (that is, it is an ELSE condition). IFS does not have an
inherent ELSE condition, but it can be easily generated. All you have to
do is make the final logical_test equal to a condition which is always true
such as TRUE or 1=1 (say).

Other issues to consider:

¢ whilst the value_if_true may be empty, it must not be omitted.
Having an odd number of arguments in an IFS statement would
give rise to the “You’ve entered too few arguments for this
function” error message

o if alogical_test is not actually a logical test (for example, it
evaluates to something other than TRUE or FALSE, the function
returns an #VALUE! error. Numbers still appear to work though:
any number than zero evaluates as TRUE and zero is considered
to be FALSE

¢ if no TRUE conditions are found, this function returns the #N/A
error.

To show how it works, consider the following example:

B|C|D|E F G H |
7
8 Becoming a Qualified Excel 2019 Guru
9
10 Criteria
"
12 Criteria Yes | No Grade
13 Already qualified? Mo 3 Star
14 Work for Microsoft? 2 Star
15 Passed exam? Yes 1 Star
16 Studying? Student
17
18 Grade Achieved

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Here, would-be gurus are graded based on evaluation criteria in the
table, applied in a particular order:

=IFS(H13="Yes",113,H14="Yes",114,H15="Yes",115,H16="Yes",116,TRUE
,"Not a Guru")

| think it’s safe that although it is reasonably straightforward to follow, it
is entirely reasonable to say it’s not the prettiest, most elegant formula
ever put to Excel paper. In particular, do pay heed to the final logical_
test: TRUE. This ensures we have an ELSE condition as discussed above.

To be fair, one similar solution using previous Excel functions isn’t any
better:

=IF(H13="Yes",113,IF(H14="Yes",114,IF(H15="Yes",115,IF(H16="Yes",116
,"Not a Guru")))).

You may note | am not supplying multiple examples of IFS formulae. This
is because wherever possible you should try and replace the logic with
a simpler, more accessible, logic for end users. For instance, sometimes
the logic of an elongated IF or IFS formula may be condensed to

=IF(Multiple Conditions = TRUE, Do Something, Do Something Else).

In this situation, there is a function in Excel that can help.

My old English teacher said you should never start or finish a sentence
with the word “and”. AND is one of several Excel logic functions (others
include NOT [already mentioned earlier, which takes the logical opposite
of an expression] and OR). It returns TRUE if all of its arguments evaluate
to TRUE; it returns FALSE if one or more arguments evaluate to FALSE.

One common use for the AND function is to expand the usefulness
of other functions that perform logical tests. For example, the IF
function performs a logical test and then returns one value if the test
evaluates to TRUE and another value if the test evaluates to FALSE.
By using the AND function as the logical_test argument of the IF
function, you can test many different conditions instead of just one.

Condition 1
Condition 2
Condition 3

All arguments are true
The first and last arguments are true
At least one argument is false

(TR R R S TE R E T

=
=

For a more practical example, consider the following summary data table:

For example, imagine you are in New York on a Monday. Consider the
expression

=AND(condition1, condition2, condition3)
where:

¢ conditionl is the condition, “today is Monday”
¢ condition2 is the condition, “you are in New York” and

¢ condition3 is the condition, “this author is the best looking guy
you have ever seen”.

This would clearly be FALSE as not everywhere in the world it would be
Monday (that is, condition1 would be breached)...

As alluded to above, the syntax for AND is as follows:

AND(logicall, [logical2], ...)

where:
¢ logicall: the first condition that you want to test that can
evaluate to either TRUE or FALSE

¢ |ogical2: additional conditions that you want to test that can
evaluate to either TRUE or FALSE, up to a maximum of 255
conditions. logical2 is optional and is not needed in the syntax.

It should be noted that:

e the arguments must evaluate to logical values, such as TRUE or
FALSE, or the arguments must be arrays or references that contain
logical values

e if an array or reference argument contains text or empty cells,
those values are ignored

o if the specified range contains no logical values, the AND function
returns the #VALUE! error value.

To highlight how AND works:

B c

TRUE

FALSE

TRUE

FALSE |-AND(B1:83)
TRUE [=AnD(B1,83)
TRUE |=NOT(AND(B1:B3))

A B C D E F

1
2 | ID2017 yes S 9,069 | 5 5,000 2.50% 5 227
3 1D 3102 yes S 6,285| 5 8,000 2.00%] -

4 | 1D 3148 no S 8,458 5 -

3 ID 3321 yes S 5,035 S 3,000 3.00% 5 169
6 | ID3817 no S 19,973 4 -

7 | ID5298 nao S 7,986] -

8 ID 6774 yes S 1,571| S 5,000 2.50%] -

g ID 8563 no $ 16,124 5 -
10

11 =IF{AND(B2="yes" C2-D2>=0),C2¥E2,)

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Here, we have a list of staff in column A, with identification of those who ¢ condition2 is the condition, “you are in London” or

work in Sales (that is, eligible for a bonus) in column B. Details of the « condition3 is the condition, “the Earth is flat”.

sales made, the threshold for getting a bonus, and what rate it is paid

are detailed in columns C, D, and E respectively. The formulain cell F2: This would clearly be TRUE as you are definitely in London (that is,

=IF(AND(B2="yes",C2-D2>=0),C2*E2,) condition2 holds).
The syntax for OR is as follows:
denotes the Bonus Paid and is conditional on them working in Sales
(B2="yes") and that the sales made were at or above the required OR(logicall, [logical2], ...)
threshold (€C2-D2>=0). If both conditions are TRUE, then a bonus

(C2*E2) is paid accordingly (putting nothing after the final comma is where:
the equivalent of saying “else zero”). This is a prime example of IF and « logicall: the first condition that you want to test that can
working together — and more often than not, these formulas are much evaluate to either TRUE or FALSE

easier to read than their IF(IF{IF or IFS counterparts. ¢ logical2: additional conditions that you want to test that can

The other logic function not yet mentioned, OR, is similar to AND, but evaluate to either TRUE or FALSE, up to a maximum of 255
only requires one condition to be TRUE. Similar to AND, the OR function conditions. logical2 is optional and is not needed in the syntax.
may be used to expand the usefulness of other functions that perform

logical tests. For example, the IF function performs a logical test and 't should be noted that:

then returns one value if the test evaluates to TRUE and another value e the arguments must evaluate to logical values, such as TRUE or
if the test evaluates to FALSE. By using the OR function as the logical_ FALSE, or the arguments must be arrays or references that
test argument of the IF function, you can test many different conditions contain logical values

instead of just one. . .
¢ if an array or reference argument contains text or empty cells,

For example, imagine you are in London on a Tuesday. Consider the those values are ignored
expression « if the specified range contains no logical values, the OR function
=0OR(condition1, condition2, condition3) returns the #VALUE! error value.

where: In summary, OR works as follows:

¢ conditionl is the condition, “today is Tuesday”

A B C
1 |Condition 1 TRUE
2 |Condition 2 FALSE
3 |Condition 3 FALSE
4
3
4]
7 |Atleast one argument is true TRUE =0R(B1:B3)
8 |All arguments are false FALSE |=NOT[{OR(B1:B3))
9 |Atleast one argument is false TRUE |=NOT{AND(B1:B3))
10

For a more practical example, consider the following summary data table:

1 C .

2 1D 2017 yes S 9,069 5 5,000 250% |& 227
3 1D 3102 yes S 6,285 5 8000 2.00% |% -
4 1D 3148 no s 8,458 5 85
5 1D 3321 yes S 56355 3,000 3.00% |&% 169
& 1D 3817 no $ 19,973 5 200
7 1D 5298 no s 7,986 5 80
8 | ID6774 yes S 1,571| & 5000 250% |$% -
9 1D 8563 no S 16,124 5 161
10

11 |Non-Sales Staff

12

13 Threshold s 5,635

14

15 Bonus % 1.00%

16

17

18 | =IF{OR{AND(B2="yes" C2-D2>=0} AND{B2=>"yes" C2-5C513>=0)),C2*IF(B2="yes" E2,5C515)},)

.
3

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Now there is a complex formula: To summarise so far, sometimes your logical_test might consist of

~IF(OR(AND(B2="yes",C2-D2>=0), AND(B2<>"yes",C2-6C$13>=0)),C2*IF M UItPle criteria:

(B2="yes”,E2,5C$15),) =IF(condition1=TRUE,IF(condition2=TRUE, IF(condition3=TRUE,formula,),),)

It isn’t quite as bad as it first seems. This is based on the AND case study Here, this formula only gives a value of 1 if all three conditions are true.
from earlier, but it also allows for Non-Sales staff to participate in the This nested IF statement may be avoided using the logical function
bonus scheme too. The logical_test in the primary IF statement, AND(Condition1,Condition2,...) which is only TRUE if and only if all

OR(AND(BZ="yes",C2-D2>=0),AND(BZ<>"yes",C2-C13>=0)) dependent arguments are TRUE,

Is essentially OR(condition1, condition2). The first condition is as before =IF(AND(condition1,condition2,condition3),formula,)

for Sal ff, wher h n S . .
or Sales staff, whereas the second, which is actually easier to read. A similar example may be constructed

AND(B2<>"yes”,C2-C13>=0) for OR also. However, even using these logic functions, formulas may

become — or simply look — complex quite quickly. There is an alternative:
checks whether Non-Sales staff have exceeded the Non-Sales Staff fags. In its most common form, flags are evaluated as

threshold (cell C13). Do you see that the check for Non-Sales staff is
given by B2<>"yes” (B2 is not equal to "yes”) rather than B2="no"? =(condition=TRUE)*1
This takes me back to my earlier point about ensuring you develop your
logical_test correctly. It's a subtle point, but will ensure all staff are
considered (rather than excluding staff where no entry has been made

condition=TRUE will give rise to a value of either TRUE or FALSE. The
brackets will ensure this is condition is evaluated first; multiplying by 1

in column B). will provide an end result of zero (if FALSE, as FALSE*1 = 0) or one (if
TRUE, TRUE*1 = 1). | know some modellers prefer TRUEs and FALSEs
The other IF statement, everywhere, but | think 1’s and 0’s are easier to read (when there are lots

IF(B2="yes”,E2,C15) of them) and more importantly, easier to sum when you need to know

how many issues there are.
simply ensures the correct bonus rate is applied to the sales figure.
Flags make it easier to follow the tested conditions. Consider the

following:

D9 - fx =PRODUCT(D4:D7)

A B C D E F G H | J K L M N (o}
1
2 Counter 1 2 3 4 5 6 7 8 9 10
3
4 Divisible by 3 - - 1 - - 1 - - 1 =(MQOD(Counter,3)=0}*1
5 Greater than 4 - - - - 1 1 1 1 1 1| =(Counter>4)*1
6 Less than or equal to 9@ 1 1 1 1 1 1 1 1 1 =(Counter<=9)*1
7 Is not 6 1 1 1 1 1 = 1 1 1 1| =(Counter<>6)*1
8
9 Product = = = = = = = = 1 - | =PRQDUCT(D4:D7)

10
11

In this illustration, you might not understand what the MOD function conditions / rows easily). This effectively produces a sophisticated AND
does, but hopefully, you can follow each of the flags in rows 4 to 7 without flag, where all of the formulas are mercifully short. If | wanted the flag
being an Excel guru. Row 9, the product, simply multiplies all of the flags to be a 1 as long as one of the above conditions is TRUE (that is, | wish to
together (using the PRODUCT function allows you to add additional construct an OR equivalent), that is easy too:

D3 - £ =MAX(D4:D7)

A B C D E F G H | J K L [t N [0}
1
2 Counter 1 2 3 4 5 6 i 8 9 10
3
4 Divisible by 3 - - 1 - - 1 1 =(MOD({Counter,3)=0)*1
5 Greater than 4 - - - - 1 1 1 1 1 1| =(Counter>4)*1
6 Less than or equal to 9 1 1 1 1 1 1 1 1 1 - | =(Counter<=3)*1
7 Is not 6 1 1 1 1 1 - 1 1 1 1| =(Counter<=6)*1
8
9| max 1] 1 1 1 1 1 1 1 1 1] =max(p2:07)

HE

Flags frequently make models more transparent and this example bar), then more people will follow it. If more can follow the model logic,
provides a great learning point. Often, we mistakenly believe that errors will be more easily spotted. When this occurs, a model becomes
condensing a model into fewer cells makes it more efficient and easier trusted and therefore is of more value in decision-making.

follow. On the contrary, it is usually better to step out a calculation. If

it can be followed on a piece of paper (without access to the formula Ne careful though. Sometimes you just cant use flags. Consider the

following instance:

J =(Numerator/Denominator) *(Denominator<=0)
D E B G H |
Numerator 3

Denominator

Decimal | #DIV/0! _l

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

Here, the flag does not trap the division by zero error. This is because this formula evaluates to

=#DIV/0! x 0

which equals #DIV/0! If you need to trap an error, you must use an IF function.

More Excel Functions next month.

Beat the Boredom Suggested Solution

Earlier, we asked if you could find a way to extract and output just the bold characters from the cell. How did you go? We couldn’t find a function
that would help us at all, so we created our own! And not a LAMBDA in sight...

Suggested Solution

If you’ve been following our VBA blog series and don’t have much experience with VBA at all, then this might go a bit over your head. However, I'll
try to explain as we go along:

Public Function udfExtractNonBold(Data A= Range) Az String

Dim index As Long
Dim returnValues As Variant
returnValue = ™"
ith Data
If VarType (Data.Valuel) = vb5tring Then
For index 1 To .Characters.Count
If Hot aracte index, 1)}.Font.Bold Then

retu 1u arnk &

If Not Data.Font.B

returnValue = D
End If
End If
End With
udfExtractNonBold = return¥Value

End Function

Let’s consider what it’s doing by breaking it into steps:

o firstly, this produces a function that we’re going to call udfExtractNonBold, and it takes a cell range as its input (e.g. =udfExtractNonBold(A1))
o for the cell range input, initially it will check to see whether it’s actually a text string. If it's a number, it will check to see if the whole thing is bold

e if it’s a text string, then it will run through each character, one at a time. It will then check if that character is bold, and if so, add it to a new
string that we’re storing (the thing called ‘returnValue’)

e finally, it will output the returnValue: if there’s no bold in the text string, it will give us a blank result. If there is bold text, it will give us only
the text that was made bold, and nothing else in the cell.

Until next time.

Upcoming SumProduct Training Courses - COVID-19 update

Due to the COVID-19 pandemic that is currently spreading around
the globe, we are suspending our in-person courses until further
notice. However, to accommodate the new working-from-home
dynamic, we are switching our public and in-house courses to
an online delivery stream, presented via Microsoft Teams, with
a live presenter running through the same course material,
downloadable workbooks to complete the hands-on exercises
during the training session, and a recording of the sessions for

your use within 1 month for you to refer back to in the event
of technical difficulties. To assist with the pacing and flow of
the course, we will also have a moderator who will help answer
guestions during the course.

If you're still not sure how this will work, please contact us at
training@sumproduct.com and we'll be happy to walk you
through the process.

| tocation | Cowse ___________________opae ______ |oDate | oDuation | Duration |

Online (Australia Power Pivot, Power Query and Power BI

Online (Australia Excel Tips and Tricks
Online (Australia Financial Modelling
Online (Australia Excel Tips and Tricks
Online (Australia Financial Modelling
Online (Australia Power Pivot, Power Query and Power BI
Online (Australia Excel Tips and Tricks

Online (Australia Financial Modelling

16 - 18 Feb 2022
23 Feb 2022
24 - 25 Feb 2022
11 Apr 2022
12 - 13 Apr 2022
10 - 12 May 2022
17 May 2022
18 - 19 May 2022

09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST

(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT

3 Days
1 Day
2 Days
1 Day
PAVENS
3 Days
1 Day
2 Days

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

mailto:contact@sumproduct.com
http://www.sumproduct.com

| Location | Course (oae _lopate | ouaton | Duration_

Online (Australia)
Online (Australia)
Online (Australia)
Online (Australia)
Online (Australia)
Online (Australia)
Online (Australia)
Online (Australia
Online (Australia

Online (Australia

Online (Australia

Online (Australia

)
)
)
Online (Australia)
)
)
)

Online (Australia

Power Pivot, Power Query and Power Bl
Excel Tips and Tricks

Financial Modelling

Excel Tips and Tricks

Financial Modelling

Power Pivot, Power Query and Power BI
Excel Tips and Tricks

Financial Modelling

Power Pivot, Power Query and Power BI
Excel Tips and Tricks

Financial Modelling

Power Pivot, Power Query and Power BI
Excel Tips and Tricks

Financial Modelling

19 - 21 Jul 2022
26 Jul 2022

27 - 28 Jul 2022
29 Aug 2022

30 - 31 Aug 2022
28-30 Sep 2022
5 Oct 2022

6 -7 Oct 2022
9-11 Nov 2022
16 Nov 2022

17 - 18 Nov 2022
7 -9 Dec 2022
14 Dec 2022

15 - 16 Dec 2022

09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEST
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT
09:00-17:00 AEDT

(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 23:00-07:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT
(-1 day) 22:00-06:00 GMT

3 Days
1 Day
2 Days
1 Day
2 Days
3 Days
1 Day
2 Days
3 Days
1 Day
2 Days
3 Days
1 Day
PAEIS

Key Strokes

Each newsletter, we’d like to introduce you to useful keystrokes you may or may not be aware of. This month we’d SHIFT CTRL of
the numbers:

Keystroke | What it does

CTRL+SHIFTO Show column
CTRL + SHIFT 1
CTRL + SHIFT 2
CTRL + SHIFT 3
CTRL + SHIFT 4
CTRL + SHIFT 5

Fixed decimal and comma format
Time (AM/PM) format

Date format

Currency format

Percentage format

CTRL + SHIFT 6

Exponential format

CTRL + SHIFT 7

Outline border

CTRL + SHIFT 8

Select current region

CTRL + SHIFT 9 Unhide row

There are ¢.550 keyboard shortcuts in Excel. For a comprehensive list, please download our Excel file at
www.sumproduct.com/thought/keyboard-shortcuts. Also, check out our new daily Excel Tip of the Day feature on the

www.sumproduct.com homepage.

Our Services

We have undertaken a vast array of
assignments over the years, including:

- Business planning

+ Building three-way integrated
financial statement projections

+ Independent expert reviews

- Key driver analysis

- Model reviews / audits for internal
and external purposes

- M&A work

- Model scoping

- Power BIl, Power Query & Power Pivot

- Project finance

- Real options analysis

- Refinancing / restructuring

- Strategic modelling

- Valuations

- Working capital management

If you require modelling assistance of any

kind, please do not hesitate to contact us
at contact@sumproduct.com.

Link to Others

These newsletters are not intended to be

closely guarded secrets. Please feel free

to forward this newsletter to anyone you

think might be interested in converting to
“the SumProduct way”.

If you have received a forwarded
newsletter and would like to receive
future editions automatically, please

subscribe by completing our newsletter
registration process found at the foot of
any www.sumproduct.com web page.

Any Questions?

If you have any tips, comments or queries

for future newsletters, we’d be delighted
to hear from you. Please drop us a line at
newsletter@sumproduct.com.

Training

SumProduct offers a wide range of
training courses, aimed at finance
professionals and budding Excel experts.
Courses include Excel Tricks & Tips,
Financial Modelling 101, Introduction to
Forecasting and M&A Modelling.

Check out our
more popular
courses in
our training
brochure:

Drop us a line at training@sumproduct.com
for a copy of the brochure or download

it directly from
www.sumproduct.com/training.

Sydney Address: SumProduct Pty Ltd, Suite 803, Level 8, 276 Pitt Street, Sydney NSW 2000
New York Address: SumProduct Pty Ltd, 48 Wall Street, New York, NY, USA 10005
SumProduct Pty Ltd, Office 7, 3537 Ludgate Hill, London, EC4M 7JN, UK

contact@sumproduct.com
www.sumproduct.com
+61 3 9020 2071

London Address:
Melbourne Address: SumProduct Pty Ltd, Ground Floor, 470 St Kilda Road, Melbourne, VIC 3004
Registered Address: SumProduct Pty Ltd, Level 14, 440 Collins Street, Melbourne, VIC 3000

