

NEWSLETTER #100 - March 2021

We made it! And they said it couldn’t be done. Well, actually, they didn’t say anything because few cared!
But no matter: welcome to newsletter number 100!! The monthly newsletter on all things Excel, financial modelling and Power BI
comes of age.

100 Newsletters: that’s 964 articles, 695 keyboard shortcuts, 47 readers’ questions answered and 2,040 pages, this newsletter has
truly evolved from its humble beginnings to something for everyone territory. And yes, we know only a crazy person would read it
from cover to cover. But that’s why it’s so badly edited…

We look back at the top three most popular articles over that time and also the top five Excel tips (regular readers might know what’s
coming!). There is even a teaser for some big news coming to a theatre near you later in the year (well, not really, it’s a book…). Most
of the regulars are here too, save for Power BI Updates, which were not announced before our printing deadline. We have another
Beat the Boredom Challenge, Visual Basics, Power Pivot Principles, Power Query Pointers, and we even put the “fix” in on this month’s
A to Z of Excel Function(s).

Whether you have been here from the outset or this is your first edition, welcome! Happy reading and remember:
stay safe, stay happy, stay healthy.

Here’s to the next 100, if it doesn’t kill me…

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

www.sumproduct.com | www.sumproduct.com/thought

Liam Bastick, Managing Director, SumProduct

Who’d Have Thunk?

When I was a little boy, I dreamed of this moment. I looked
up to the stars and gazed at the brightest one. There was a
calling. I stood transfixed, alive with every nerve and fibre in
my being. It felt like this celestial body’s rays were beaming
down on me – just for me. It was like a voice from beyond
told me to heed my calling: to strive for Excel modelling
perfection, work in corporate finance, commit many, many
long hours to the cause and write a newsletter.

I never thought it would happen. It was an impossible
dream. It took years of training. Who would have thought
you could write a monthly newsletter on Excel / financial
modelling that would be on average 20 pages for 100 issues?
Imagine the glamour, the fame, the fortune of it all…

If all this sounds like BS (and I am not talking Balance Sheets),
you’d be right. What the hell was I thinking? How many years
of my life have I wasted..? Aaaaaaaaaaaaaaaaaaaaaaagh.

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Special Announcement

We have saved this one up for our 100th. Coming soon:

No Excel; just Power BI. Others say they have already done this. We actually have. More anon.

Microsoft Announces Performance Improvements in Excel for the Web

Excel for the web has had some work done under the hood. Microsoft’s programmers have addressed and improved several scenarios, including
opening workbooks, navigating within a workbook and other interactions:

	 •	 Loading: the time it takes to load a workbook has now been reduced significantly, making it faster to open your file online
	 •	Scrolling: a fundamental part of working in Excel, this has been a little sluggish as a browser experience. However, now, even in incredibly 	
		 complex sheets, scrolling is smoother and faster
	 •	Selection: even more fundamental than scrolling is the need to interact with content in your workbook. Microsoft claim to have optimised the 	
		 speed of cell selection, so theer will be less of a lag time when choosing ranges
	 •	Navigating: several navigation actions, such as Find / Search, Go To, page-up and page-down are all now faster
	 •	Modifying: cell editing and formatting experiences are now faster than before.

This, together with the new simplified Ribbon, should make for a better online spreadsheeting experience.

Office 2021 Coming Soon

Microsoft has recently announced two new versions of Office 2021 (not
Office 2022, as previously thought): a consumer Office 2021 version and
Office Long-Term Servicing Channel (LTSC) for commercial customers.

Office 2021 will be available later this year for both Windows and
macOS, and as before, it has in mind those that want a “perpetual”
licence, who do not wish to subscribe to the cloud / Microsoft 365
versions. Both of the new Office variants will ship with OneNote and
include 32-bit and 64-bit versions.

Little information has been divulged so far, but it is known that
the Office LTSC variant will include things like dark mode support,
accessibility improvements, as well as features like Dynamic Arrays
and XLOOKUP in Excel. It’s probably safe to say that Office 2021
should include similar features.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Dark mode is probably the biggest “new” thing here:

it’s clear that Microsoft strategy pivots on the 365 subscription / cloud-
based model and not this product.

Office LTSC will apparently only be supported for five (5) years instead
of the usual seven (7) that Microsoft has previously provided for Office.
Internet sources state that pricing for Office Professional Plus, Office
Standard and individual apps will be increasing 10% for commercial
customers, whereas the Office 2021 consumer and small business pricing
structures shall remain the same.

The change in Office LTSC support duration will now better align with
how Windows is supported, and Microsoft is also aligning its release
schedules for both Office and Windows more closely as a result. Both of
the next versions of Office LTSC and Windows 10 LTSC will be released in
the second half of 2021.

A Preview of Office LTSC is due in April, with a full release later this year.
Apparently, the consumer Office 2021 variant won’t be available in
Preview, though.

Over the years, we have seen various forms of business and project
financing, including equity, shareholder loans, senior debt, mezzanine
finance, hire purchase, bonds, convertibles, warrants and so on. Prima
facie, this myriad of financial instruments can obfuscate the uninitiated,
but like this last phrase, the jargon can be simplified.

No matter what the financial instrument, the mechanics essentially boil
down to two key elements:

	 •	Return on finance: the yield to investors or the costs of capital to 	
		 the recipient of capital (e.g. interest, dividends); and

	 •	Return of finance: repayments (or conversion) of original capital 	
		 issued / drawn down.

And it really is as simple as that. The logic behind how the calculations
may vary, such as when capital and returns are paid or rolled up, what
order it is paid in and so on, but the computations may be summarised
by two control accounts (i.e. summaries that show / reconcile how the
Balance Sheet varies from one period to the next):

Top 3 Articles: #3 Debt Modelling

For our 100th newsletter, we’ve decided to reproduce the three articles that have produced the most feedback in the past 99 issues. We are counting
them down in reverse order. This is Number 3 – exciting, isn’t it? Don’t answer that…

Returns of Finance

Opening Balance (e.g. Debt / Equity) b/f XX Previous period Balance Sheet item

Additions (e.g. drawdowns / issuances / conversions) X Typically in Cash Flow Statement

Returns on finance rolled up (e.g. “interest capitalised”) X Usually a Balance Sheet movement

Deductions (e.g. repayments / buybacks / conversions) (X) Typically in Cash Flow Statement

Closing Balance (e.g. Debt / Equity) c/f XX Current period Balance Sheet item

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Returns of Finance

Opening Return Payable (e.g. Interest Payable) b/f XX Previous period Balance Sheet item

Return Accrued (e.g. Interest Expense) X Income Statement or Balance Sheet movement

Return Paid (e.g. Interest Paid) (X) Cash Flow Statement

Closing Return Payable (e.g. Interest Payable) c/f XX Current period Balance Sheet item

When both businesses and lenders consider debt, they look at two key
aspects: risk and return. These are important for credit risk modelling /
portfolio analysis, etc. However, when undertaking financial modelling,
it is the third ‘R’ that is often the most important.

In a financial model, risk and return are usually modelled via simple
inputs and occasional what-if analysis. Ranking, on the other hand,
affects the entire financial structure of the model:

As the above graphic shows, if the order of service repaying capital changes, the entire logic will change. This may affect interest / debt service cover
ratios (see below). It is important in scoping any such model that the order is understood and how it will be affected by such factors as:

	 •	Breach of covenants
	 •	Conversion of financial instruments
	 •	Breach of covenants or other ratios
	 •	 Liquidation / insolvency.

It is not correct to assume that the order of financing will never change.

Further, there is confusion between the jargon used by the banking industry and accountants when considering debt mechanics:

When holding conversations with financiers, be sure you are on the same page before building interest into a financial model!

Scenario Banking term Accounting term

Interest is not paid (either by agreement or due to
insufficient funds) and is added to the outstanding principal
for future interest calculations

Interest capitalised Interest rolled-up

Interest is not added to the balance but is paid (although
there may be a slight timing issue)

Interest amortised
(principal is amortised similarly)

When accrued: interest expense
When paid: interest paid

Regardless of whether paid or not in reality, interest meets
the criteria specified in the relevant accounting standards
to be held in the Balance Sheet

n/a Interest capitalised

When capitalised under accounting rules, the interest
charge is released to the P&L over the life of a project on
some agreed equitable basis

n/a Interest amortised

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Top 3 Articles: #2 Dynamic Arrays

For our 100th newsletter, we’ve decided to reproduce the three articles that have produced the most feedback in the past 99 issues. We are counting
them down in reverse order. Here is one that caused a massive reaction in the community – either excitement because of what you could do with
them, or else disappointment because their version of Excel didn’t have them…

September 24, 2018 is the day Excel moved on. Yes, we’ve had Power
Pivot, Power Query / Get & Transform and Power BI, but Microsoft’s
“Calc” team has been busy behind the scenes rearranging the furniture.

By “furniture” I mean the “calculation engine” – it’s had a complete re-
write, and there are benefits general Excel users will reap for years to

come. The first wave sees a new array calculation (“Dynamic Array”),
seven new functions and two new error messages. And that’s just the
start. There’s going to be plenty more coming in the next few years. But
it’s in Office 365…

So, what’s the big deal?

Spilling the Beans

Let me begin by just looking at what a Dynamic Array is. Consider the following data:

If I were to type =F12:H27 into another cell, Excel in the past would have thought I had gone mad. I’d need to wrap it in an aggregation function such
as SUM, COUNT or MAX, to name but a few. Otherwise, I would have to wrap it in braces using CTRL + SHIFT + ENTER and use it as an array formula.

But no more.

Look at what happens when I type =F12:H27 into cell F33:

The formula automatically extends to three columns by 16 rows! It has spilled. Get used to the vernacular. There’s a reason this article got the
name it did!

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Any formula that has the potential to return multiple results can be
referred to as a Dynamic Array formula. Formulae that are currently
returning multiple results, and are successfully spilling, can be referred
to as Spilled Array Formulae.

Notice I did not have to highlight all of the cells F33:H48. It spilled. Also
take note I formatted cell F33 – er, that didn’t spill, because presently
formatting isn’t propagated. This is why this is not yet Generally
Available. Microsoft is still trying to work out what should and shouldn’t

be allowed to happen in this first release. But don’t let that put you off.

And don’t let this basic example put you off either. If you feel a general
sense of underwhelm coming over you, it’s because I haven’t yet
communicated how powerful this all is as my example was too basic.

However, before I carry on there is a question I do need to cover with
my far too simple example: what happens if something gets in the way?

In this example, in cell G40, I have typed in the obtrusive text, “I’m in the way”. And it quite literally is. Consequently, I have generated the brand
new #SPILL! error. The formula cannot spill, so the error message is generated accordingly.

#SPILL! Errors

#SPILL! errors are returned when a formula returns multiple results, and Excel cannot return the results to the spreadsheet. There are various
reasons an #SPILL! error could occur:

	 •	 spill range is not blank: as in my example (above), this error occurs when one or more cells in the designated spill range are not blank and 	
		 thus may not be populated.

	 	 When the formula is selected, a dashed border will indicate the intended spill range. You may select the error “floatie” (believe it or not, 	
	 	 this 	 is what Microsoft call these things!), and choose the ‘Select Obstructing Cell’ option to immediately go the obstructing cell. You 	
	 	 can then clear the error by either deleting or moving the obstructing cell's entry. As soon as the obstruction is cleared, the array formula will 	
	 	 spill as intended

	 •	 the range is volatile in size: this means the size is not “set” and can vary. Excel was unable to determine the size of the spilled array because 	
	 	 it's volatile and resizes between calculation passes. For example, the new function SEQUENCE(x) (explained in detail below) generates a list 	
	 	 of x numbers increasing by 1 from 1 to x. That’s fine, but the following formula will trigger this #SPILL! error:

=SEQUENCE(RANDBETWEEN(1,1000)).

	 	 Dynamic array resizes may trigger additional calculation passes to ensure the spreadsheet is fully calculated. If the size of the array continues 	
	 	 to change during these additional passes and does not stabilise, Excel will resolve the dynamic array as #SPILL! This error type is generally 	
	 	 associated with the use of RAND, RANDARRAY and RANDBETWEEN functions. Other volatile functions such as OFFSET, INDIRECT and TODAY 	
	 	 do not return different values on every calculation pass so tend not to generate this error

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	extends beyond the worksheet’s edge: in this situation, the spilled array formula you are attempting to enter will extend beyond the 	
	 	 worksheet's range. You should try again with a smaller range or array. For example, moving the following formula to cell A1 will resolve the 	
	 	 error, and the formula will spill correctly

	 •	Table formula: as I will explain shortly, Tables and Dynamic Arrays are not yet best friends. Spilled array formulae aren't supported in Excel 	
	 	 Tables (generated by CTRL + T). Try moving your formula out of the Table, or go to Table Tools -> Convert to range

	 •	out of memory: I have forgotten what this one means. Sorry, I couldn’t resist that. The spilled array formula you are attempting to enter has 	
	 	 caused Excel to run out of memory. You should try referencing a smaller array or range

	 •	 spill into merged cells: spilled array formulae cannot spill into merged cells. You will need to un-merge the cells in question or else move the 	
	 	 formula to another range that doesn't intersect with merged cells.

	 When the formula is selected, a dashed border will indicate the intended spill range. You can again select that wonderfully named error floatie 	
	 and choose the ‘Select Obstructing Cell’ option to immediately go the obstructing cell. As soon as the merged cells are cleared, the array 	
	 formula will spill as intended

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	unrecognised / fallback error: the “catch all” variant. Excel doesn't recognise, or cannot reconcile, the cause of this error. Here, you should 	
	 	 make sure your formula contains all of the required arguments for your scenario.

Returning to Dynamic Arrays

Now that we have considered what happens if you block a Dynamic Array, let me now turn my attention to what happens if you don’t. You get the
following:

Do you see I am not having to anchor cells (i.e. use dollar [$] signs)? The formula just spills. Let me be clear. If I select cell F34, I get the following:

Here’s a first. Check out the formula in the formula bar. It’s greyed out. Ever seen that before? Effectively, cell F34 contains the value ‘Triangle’
but it does not actually contain an “Excel” formula in the usual sense. To demonstrate this, let me show you the VBA Immediate Window:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

But, to quote Bill Jelen, similar to Schrodinger's Cat, if you select cells F33:H48 and use ‘Go To Special’ (F5 -> Special), and then select ‘Formulas’,
cells F33:H48 are shown as formula cells. You can even copy and paste them as values. Ladies and gentlemen, welcome to The Twilight Zone (cue
eerie music).

I mentioned in the #SPILL! errors section that you cannot use Dynamic Arrays in a Table, but Dynamic Arrays may refer to a Table, viz.

In this above illustration, cells F57:H72 have been converted into a Table (CTRL + T), with the Table named Basic_Array_Example. In cell L57, I have
simply typed ‘=’ and then highlighted the entire Table. It was all replicated.

The advantage of linking a Dynamic Array to a Table is clear:

I can add rows and / or columns and the Dynamic Array will update
automatically. Do note that this does not breach the #SPILL! range is
volatile in size error. This is because the range size will not vary on every
calculation pass.

Talking of varying sizes, it’s clear to see one potential issue with Dynamic
Arrays. If we are not referring to a Table, what happens if the source
data changes dimensions? This may be why you should refer to a Table
for safety.

However, once you have a Dynamic Array, referring to it is simple using
what is known as the Spilled Range Operator. For example, if I want to
refer to the Dynamic Array in the previous examples, it initially had a
range of L57:N72. However, once I had added a row and column to the
Table, this resized to L57:O73. I can easily refer to this array, whatever
its size as follows. In its initial state:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The formula =L57# allows for variations – you simply type in the top left-hand cell reference (i.e. the cell with the non-greyed out formula) and add
‘#”, known as the Spilled Range Operator. Simple!

It’s not all peaches and cream though. Whilst Dynamic Arrays and Tables share some similarities, they are very different beasts. This couldn’t be
clearer than when you create charts:

Here, I created two charts when I only had the data up to June. Then,
I added the data for July. The chart on the left referencing the Table
source data updated instantly. However, the chart on the right still only
displayed up to June even though the Dynamic Array had updated. It is
true that with clever use of range names this may be overcome, but it

doesn’t get around the fact that Tables remain a simpler way to retain
dynamic chart data (for the time being anyway!).

Conclusion: use Tables, not Dynamic Arrays, as your references for
dynamic charts.

Implicit Intersection Implications

It may be an alliteration and sound like something you can get arrested
for, but Dynamic Arrays do come at a price. There aren’t many users
out there who used them, but there are some – and hence there will be
some legacy calculations affected.

In the past, if you entered =A$1:A$10 anywhere in rows 1 through
10, the formula would return only the value from that row. In fact, a

spreadsheet our company is presently auditing relies on this behaviour.
However, in the brave new world of Office 365 (albeit selected Insider
recipients for the time being), typing this formula would create a Spilled
Array Formula. To protect existing formulae, we need a new – if not
instantly breathtaking – function…

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

SINGLE Function / @ Operator

Don’t judge the remaining functions on our first new feature, originally
a function, now an operator. This one is essential to keep Excel running
smoothly, but it’s probably safe to say it won’t set the world alight. It’s
like toilet roll – imagine your situation without it…

When Dynamic Arrays first came out, the SINGLE function returns a
single value using logic known as implicit intersection. SINGLE could
return a value, single cell range or an error.

The function had the following syntax:

=SINGLE(value).

The function has just one argument:

	 •	value: this argument is required and represents the array to be selected.

When the supplied argument is a range, SINGLE would return the cell at the intersection of the row or column of the formula cell. Where there is
no intersection, or more than one cell falls in the intersection, then SINGLE would return a #VALUE! error. When the supplied argument is an array,
SINGLE would return the first item (Row 1, Column 1).

In the example below, the two SINGLE formulae are supplied a range, H13:H27, and return the values in cells H17 and H22 respectively.

However, more recently, SINGLE was replaced with the @ operator as follows:

Now, I mention this history with good reason. Excel will only remove @
from a formula where previous Excel versions would have used implicit
intersection (as described above) to return a single value from a range, a
named range or function parameter.

On the positive side, if you attempt to enter such a formula, Excel will
warn you and do its utmost to stop you. It is still possible to cause an
issue though. For example, in Office 365, you could create the following
formula:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In older versions of Excel, this would appear as:

Notice the error message is =_xlfn.SINGLE(A2), not =_xlfn.@(A2). This is confusing if you don’t know the history of the @ operator. Worse comes
if you try to evaluate this formula:

It generates an #NAME? error, which is far from ideal.

Dynamic Arrays vs. Legacy Array Formulae

Prior to this new functionality, if you wanted to work with ranges in Excel, you used to have to build array formulae, where references would refer
to ranges and be entered as CTRL + SHIFT + ENTER formulae. The main differences are as follows:

	 •	Dynamic Array formulae may spill outside the cell bounds where the formula is entered. The Dynamic Array formula technically only exists in 	
		 the cell in the top left-hand corner of the spilled range (as shown earlier), whereas with a legacy CTRL + SHIFT + ENTER formula, the formula 	
		 would need to be entered in the entire range

	 •	Dynamic arrays will automatically resize as data is added or removed from the source range. CTRL + SHIFT + ENTER array formulae will 	
		 truncate the return area if it's too small, or return #N/A errors if too large

	 •	Dynamic array formulae will calculate in a 1 x 1 context

	 •	Any new formulae that return more than one result will automatically spill. There's simply no need to press CTRL + SHIFT + ENTER

	 •	According to Microsoft, CTRL + SHIFT + ENTER array formulae are only retained for backwards compatibility reasons. Going forward, you 	
		 should use Dynamic Array formulae instead

	 •	Dynamic array formulae may be easily modified by changing the source cell, whereas CTRL + SHIFT + ENTER array formulae require that the 	
		 entire range be edited simultaneously

	 •	Column and row insertion / deletion is prohibited in an active CRL + SHIFT + ENTER array formula range. You first need to delete any existing 	
		 array formulae that are in the way.

Everybody clear? I think we are finally good to start introducing the other new functions…

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

SORT Function

I am not going to do these alphabetically – let me show the new functions then in an order that makes sense (well, to me, anyway).

The SORT function sorts the contents of a range or array:

=SORT(array, [sort_index], [sort_order], [by_column]).

It has four arguments:

	 •	array: this is required and represents the range that is required to be sorted
	 •	 sort_index: this is optional and refers to the position of the row or the column in the selected array (e.g. second row, third column). 99 times 	
		 out of 98 you will be defining the column, but to select a row you will need to use this argument in conjunction with the fourth argument, 	
		 by_column. And be careful, it’s a little counter-intuitive! The default value is 1
	 •	 sort_order: this is also optional. The choices for sort_order are 1 for ascending (default) or -1 for descending. It should be noted that you 	
		 might not want to hold your breath waiting for ‘Sort by Color’ (sic), ‘Sort by Formula’ or ‘Sort by Custom List’ using this function
	 •	by_column: this final argument is also optional. Most people want to sort rows of data, so they will want the value to be FALSE (which is 	
		 the default value if not specified). Should you be booking your mental health check, you may wish to use TRUE to sort by column in 		
		 certain instances.
This is a function people have been crying out for, for years. Enterprising spreadsheets gurus have developed array formulae and user-defined
functions that have replicated this functionality, but you don’t need it anymore! SORT is coming to a theatre near you very soon.

To show you how devilishly simple it is, consider the following data:

Sorting the ‘Points’ column in order is easy as this:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

All you have to do is type =SORT(H13:H27) into cell F32. That’s it! Note that the duplicates are repeated; there is no cull. If you want it in
descending order, simply specify the requirement in the formula:

This formula is only slightly more sophisticated, in that the sort_order (third argument) needs to be specified as -1 to switch the sort to descending:

=SORT(H13:H27,,-1).

You probably won’t want the points displayed on their own:

Now all of these arguments start to make more sense. SORT(F13:H27,3,-1) produces the whole array (array is F13:H27), sorts it on the third
(sort_index 3) column in descending (sort_order -1) order. Blake and Ivana tie on 508 points, but Blake appears first as he was first in the original
(source) table.

So far, I have only performed the one SORT. You can have more than one though:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, I have created a second (two-level) SORT. Here, you need to create what is known as an array constant for the second and third arguments
(you just type the braces in – don’t use CTRL + SHIFT + ENTER):

=SORT(F13:G27,{1;2},{1;-1}).

Only the top three have spilled in this example. How? Well, I cheated. I highlighted cells F108:H110 first, then typed in the formula

=SORT(F13:H27,3,-1)

and then pressed CTRL + SHIFT + ENTER (thus generating the { and } braces). This restricted the spill to the range stipulated. Cool. Other than making
sure no one can delete or insert any rows by creating an array formula such as {=1} across the restricted area, these appear to be the only two used
of CTRL + SHIFT + ENTER now.

SORT is really useful then, but what if you want to sort on a field you don’t want displayed in the results..?

This will sort on column 1 (‘First Name’) first, then sort on column 2
(‘Last Name’) next. This will be in ascending order (1) for the first column
and descending order (-1) for the latter. It’s not as straightforward a
formula entry as most Excel modellers are used to, but it’s relatively
straightforward once you have committed it to erm, um, what do you
call it, memory.

My final example of SORT is not something that is limited to this new
function, but it does show how things fit together. From all that has
been written above, it appears you can only get one value (using SINGLE)
or all of them (using Dynamic Arrays). That’s not true as this illustration
clearly demonstrates:

SORTBY Function

The SORTBY function sorts the contents of a range or array based on the values in a corresponding range or array, which does not need to be
displayed. The syntax is as follows:

=SORTBY(array, by_array1, [sort_order1], [by_array2], [sort_order2], …).

It has several arguments:

	 •	array: this is required and represents the range that is required to be sorted
	 •	by_array1: this is the first range that array will be sorted on and is required
	 •	 sort_order1, sort_order2, …: these are optional. The choices for each sort_order are 1 for ascending (default) or -1 for descending
	 •	by_array2, …: these arguments are also optional. These represent the second and subsequent ranges that array will be sorted on.

There are some important considerations to note:

	 •	 the by_array arguments must either be one row high or one column wide
	 •	 all of the by_array arguments must be the same size and contain the same number of rows as array if sorting on rows, or the same number of 	
		 columns as array if sorting on columns
	 •	 if the sort order argument is not 1 or -1, the formula will result in an #VALUE! error.

It’s pretty simple to use. Consider the following source data once more:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

I can use SORTBY as follows:

Here, using the formula

=SORTBY(F13:F27,H13:H27,-1,G13:G27,1)

I have sorted the ‘First Name’ field (F13:F27) on the ‘Points’ column (H13:H27) in descending (-1) order and then used the second sort on ‘Last Name’
(G13:G27) in ascending (1) order. No need for those pesky array references in multiple sorts with the SORT function (as detailed above).

FILTER Function

The FILTER function will accept an array, allow you to filter a range of data based upon criteria you define and return the results to a spill range.

The syntax of FILTER is as follows:

=FILTER(array, include, [if_empty]).

It has three arguments:

	 •	array: this is required and represents the range that is to be filtered
	 •	 include: this is also required. This specifies the condition(s) that must be met
	 •	 if_empty: this argument is optional. This is what will be returned if no data meets the criterion / criteria specified in the include argument. 	
		 It’s generally a good idea to at least use “” here.

For example, consider the following source data:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

To begin with, I will perform a simple FILTER:

Here, in cell F36, I have created the formula

=FILTER(F12:I27,G12:G27=G33,”Not Located.”)

F12:I27 is my source array and I wish only to include shapes (column G12:G27) that are ‘Triangles’ (specified by cell G33). If there are no such
shapes, then “Not Located.” is returned instead. To show this, I will change the shape as follows:

That is about as basic as it gets. I can get cleverer. Consider the following example:

I have repeated the source array (cells F48:I63) for clarity. The formula

=FILTER(F48:I63,(G48:G63=G69)*(H48:H63=G70),{"-","None","N/A","N/A"})

looks horrible to begin with, but it’s not quite as bad as it appears upon further scrutiny. The include argument,

(G48:G63=G69)*(H48:H63=G70)

contains two conditions. Firstly, G48:G63=G69 means that the ‘Shape’
(column G48:G63) has to be a ‘Triangle’ (cell G69) and that the ‘Colour’
(column H48:H63) has to be ‘Red’ (cell G70). The multiplication operator
(*) is used to denote AND. The Excel function AND cannot be used with
arrays – this is nothing special to Dynamic Arrays; AND does not work
with CTRL + SHIFT + ENTER formulae either. This syntax is similar to

how you would create AND criteria with the SUMPRODUCT function,
for example.

The final argument is similar to the syntax in SORT: {"-","None","N/
A","N/A"}. Braces (typed in!) are used to create an array argument
that specifies what should be written in each column should there be no
record that meets both criteria, e.g.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

See? Not as bad as you might first think.

My final example is very similar:

Once you realise I have simply repeated referencing for clarity, the formula

=FILTER(F84:I99,(G84:G99=G105)+(H84:H99=G106),{"-","None","N/A","N/A"})

is nothing more than the OR equivalent of the previous example, with ‘+’ replacing ‘*’ to switch from ensuring both conditions are met to only one
condition being met. As at the time of writing, XOR is not catered for, but I am sure some clever person will create an equivalent in due course (if
Microsoft doesn’t beat them to it), necessity being the mother of invention and all that jazz.

Interlude: the #CALC! Error

I mentioned there were two new error messages associated with dynamic arrays. There are others (e.g. #FIELD!), but that’s another story for another
section. I have only referred to #SPILL! so far. There is another, lurking in the background: #CALC! To add to the myriad of error messages such
#REF!, #DIV/0!, #VALUE!, #BROWN and #PIPE, let’s introduce #CALC! properly.

An #CALC! error occurs when Excel's calculation engine encounters a scenario that is not currently supported. Currently, these scenarios are:

	 •	nested array: Excel can't calculate an array within an array.
	 •	array of ranges: arrays may only contain numbers, strings, errors, Boolean values (e.g. 1 or 0, TRUE or FALSE) or linked data types. Range 	
		 references are not supported
	 •	empty array: Excel cannot return an empty set
	 •	 too many cells: custom functions that refer to more than 10,000 cells cannot be calculated in Excel for the web, and will produce this #CALC! 	
		 error instead (this is easily remedied by opening the file in a desktop version of Excel)
	 •	other: this error occurs when Excel's calculation engine encounters an unspecified calculation error with an array and represents Microsoft’s 	
		 Get out of Jail Free card.

I just want to delve a little further into one of these above situations, as both an illustration and a discussion point.

An empty array errors occur when an array formula returns an empty (sometimes referred to as null) set. According to Microsoft, #CALC! is returned
when a formula returns an empty array. That’s not always true though. Consider the “ “ (space) operator in Excel, which represents the intersect
function:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

If I change the references to two non-intersecting ranges, I get #NULL! not #CALC!

I think this is partially to keep old functions behaving as old functions
did, but it may also be the distinction between an empty subset (#CALC!)
and an invalid range (#NULL!). The latter error is displayed when you
use an incorrect range operator in a formula (valid operators include a
colon or a comma), or when you use an intersection operator (space
character) between range references to specify an intersection of two

ranges that do not intersect, as above. It’s best to remember that what
you perceive as empty arrays might not always be represented by this
new error message.

To illustrate a genuine occurrence of #CALC!, allow me to revisit the first
FILTER example:

I am going to remove the third (if_empty) argument and switch the shape in cell F36 to ‘Pentagon’:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This produces the #CALC! error in cell F36 as the result returns an empty array. To resolve this error, simply change the criterion, the formula or add
the if_empty argument to the FILTER function. This is why I had “Not Located.” as the third argument previously.

Let’s move on.

UNIQUE Function

The hilarious thing about UNIQUE is that it does two things (!). It
details distinct items (i.e. provides each value that occurs with no
repetition) and also it can return values which occur once and only once
in a referred range. I understand that Excel users may welcome the

former use with open arms and that database developers may be very
interested in the latter. I still think there should have been two functions
though. Otherwise, let’s just extend the AGGREGATE function to do just
everything (it almost does now) and be done with it!

The UNIQUE function has the following syntax:

=UNIQUE(array, [by_column], [occurs_once]).

It has three arguments:

	 •	array: this is required and represents the range or array from which to return unique values
	 •	by_column: this argument is optional. This is a logical value (TRUE / FALSE) indicating how to compare. If you wish to compare by row, the 	
		 argument should be FALSE or omitted (since this is the default). To compare by column, you will need to select TRUE
	 •	occurs_once: this argument is also optional. This requires a logical value too:
			 o	 TRUE: only return unique values that occur once
			 o	 FALSE: include all distinct values (default if omitted).

It’s probably clearer with some examples. Let’s give it a go. As always, I need source data:

Time for the most basic illustration:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In cell L13, I have simply typed

=UNIQUE(F13:F41).

No optional arguments; everything in default. If I have made an error, it’s
going to be my default. This has simply listed each store that appears; if
“North” and “North ” (extra space) were there, then both would appear.
UNIQUE is not case sensitive though and each entry would appear as
it first occurs reading down the range F13:F41. The other columns
contain similar formulae and UNIQUE looks like it takes seconds to learn.

Presently, there’s an in-joke going around the Excel Most Valuable
Professionals (MVPs) that array expert Mike Girvin is going to be choked
as he dedicated an entire chapter in one of his books to creating that list
with an array formula! Sorry Mike. Excel is fun!

It’s just as simple if you want to see unique records for two (or more)
columns, viz.

You can see UNIQUE is sort of crying out for SORT, but we’ll get to that shortly.

As mentioned earlier, it’s not the only way of using UNIQUE (no, having a unique use would be just what “they” were expecting, whoever “they”
are…). You can use it to determine values that only occur once:

Here, the formula in cell L56,

=UNIQUE(G56:G84,0,1)

uses the non-default value of 1 for the optional occurs once (third) argument. This means it identifies the salespeople who only occur once in cells
G56:G84. Brilliant; I can die content knowing now.

The real power starts coming when you start playing with Excel’s existing functions and features, together with these new functions. Take this
comprehensive example:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Let me step you through some of this. The formulae in cells L94 and M94 use UNIQUE in a similar manner to my first example, to generate the list of
distinct values in the ‘Section’ and ‘Manager’ fields. However, did you notice they have been sorted? That’s because I used the formula

=SORT(UNIQUE(H94:H122))

in cell L94, for example. Honestly, I think UNIQUE should have another argument for sorting (ascending / descending / none [default]). Watch
Microsoft ignore that suggestion.

But then I did something really cool. Cells M105 and M106 use data validation (ALT + D + L) to generate a list from the ‘Lookup Data’ section. That
requires taking a closer look:

Do you see the source for the data validation in cell M105? =L84#
- so elegant! This takes the ‘Section’ list and automatically makes the
drop-down list the required length! People create all sorts of tricks using
OFFSET, dynamic range names and the like to achieve a similar effect.

No more. =L84# (with the ‘#’, the Spilled Range Operator) is all that
is needed. That’s my favourite thing in all of these new functions and
features. I’m impressed – and I’m easily impressed.

The ‘AND / OR’ dropdown is a bit of an anti-climax after that, but the final formula that generates the final table, namely

=SORT(UNIQUE(FILTER(F93:I122,IF(M108="OR",(H93:H122=M105)+(I93:I122=M106),
(H93:H122=M105)*(I93:I122=M106)),{"N/A","-","-","-"})),{1;2;3;4},{1;1;1;1})

is rather fun. I am not going to go through it though – as every aspect of this formula is simply a re-hash of an earlier point (assuming you know the
IF function!). See if you can work your way through it for yourself.

SEQUENCE Function

The penultimate function is SEQUENCE. This function allows you to generate a list of sequential numbers in an array, such as 1, 2, 3, 4. It doesn’t
sound particularly exciting, but again, it really ramps up when combined with other functions and features. The syntax is given by:

=SEQUENCE(rows, [columns], [start], [step]).

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

It has four arguments:

	 •	 rows: this argument is required and specifies how many rows the results should spill over
	 •	 columns: this argument is optional and specifies how many columns (surprise, surprise) the results should spill over. If omitted, the default 	
		 value is 1
	 •	 start: this argument is also optional. This specifies what number the SEQUENCE should start from. If omitted, the default value is 1
	 •	 step: this final argument is also optional. This specifies the amount each number in the SEQUENCE should increase (the “step”). It may be 	
		 positive, negative or zero. If omitted, the default value is 937,444. Wait, I’m kidding; it’s 1. They’re very unimaginative down in Redmond.

Therefore, SEQUENCE can be as simple as SEQUENCE(x), which will
generate a list of numbers in a column 1, 2, 3, …, x. Therefore, be mindful
not to create a formula where x may be volatile and generate alternative

values each time it is calculated, e.g. =SEQUENCE(RANDBETWEEN(10,99))
as this will generate the #SPILL! range is volatile in size error.

Do you see how SEQUENCE propagates across the row first and then down to the next row, just like reading a book? I wonder how that might work
in alternative languages of Excel where users read right to left (it has to be the same or there would be chaos when workbooks were shared!).

Some of my peers had fun combining it with the ROMAN function:

To my mind though, my favourite simple illustration is creating a monthly calendar. A little magic with the DATE and WEEKDAY functions combined
with some conditional formatting and suddenly you have:

A vanilla example is rather bland:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

As I mentioned above, SEQUENCE is arguably more powerful when included in a more complex formula. For example:

In this instance, I have created a grid using the Excel IPMT function to determine the amount of interest to be paid in each monthly instalment. Cells
G62:R71 calculate each monthly amount and column T sums these amounts to calculate the annual interest payment, a figure which is non-trivial to
compute. The whole table may be replaced by the formula in cell V62:

=IF($F62="","",-SUM(IPMT(Annual_Interest_Rate/Months_in_Year,
SEQUENCE(1,Months_in_Year,($F62-1)*Months_in_Year+1,1),

Borrowing_Term*Months_in_Year,Amount_Borrowed))).

On an upbeat note, I put a formula in cell G61 which is simple:

=TRANSPOSE(SEQUENCE(Months_in_Year)).

Yes, I am using TRANSPOSE without CTRL + SHIFT + ENTER. We are in new territory here…

It’s still early days for these functions, but I am finding the SEQUENCE function very useful in financial modelling. It makes it easy to extend
calculations such as

into

simply by changing the number of periods (as an input) and incorporating SEQUENCE into many of the usual financial modelling formulae.

Changing depreciation grids also becomes trivial. A change of input converts

I am not going to explain this and let me tell you why. Our company,
SumProduct, builds and reviews financial models for a living. We see
terrible modelling practices established day-in, day-out. We proactively
try to discourage these traits by emphasising that complex formulae
should be stepped out and made transparent. Here, that can be done
using the original table. I don’t want people using SEQUENCE, Dynamic

Arrays or other spilled formulae to wrap up complicated calculations
into an opaque Pandora’s Box. Yes, calculation times may be slower.
Live with it. Sometimes you need to see the scenery to appreciate the
beauty. I’m just a little fearful that people will embrace these functions
a little too readily and the Road to Excel Hell beckons shortly. Sorry to
be a miserable git.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

into

momentarily. In the past, this would have required much more sophisticated formulae.

RANDARRAY Function

And so, to the final function for now: RANDARRAY. Because it was not
yet Generally Available, back in March 2019, this function became the
first function ever to change its syntax once released. This is something
that is possible to do before a function or feature becomes Generally
Available – “Preview” means Microsoft reserves the right to change
something as they see fit. That’s a good thing here.

Originally, the RANDARRAY function returned an array of random
numbers between 0 and 1. However, there was a general sense of
underwhelm with this function and the new and improved version has
just been released. It now allows you to set you own maximum and
minimum and decide whether you want the values returned to be
decimals (e.g. 17.4381672…) or integers (whole numbers).

The new syntax for the function is now as follows:

=RANDARRAY([rows], [columns], [min], [max], [integer]).

The function has five arguments, all supposedly optional (but upon testing, we weren’t quite as convinced):

	 •	 rows: this specifies how many rows the results should spill over. If omitted, the default value is 1
	 •	 columns: this specifies how many columns the results should spill over. If omitted, the default value is also 1
	 •	min: this is the minimum value that may be selected randomly. If this is not specified, it is assumed to be zero (0)
	 •	max: this is the maximum value that may be selected randomly. If this is not specified, it is assumed to be 1
	 •	 integer: if this is set to TRUE, only integer outputs are allowed; the default value (FALSE) provides non-integer (decimal) results.

Other points to note:

	 •	 if rows or columns refers to a blank cell reference, this will generate the new #CALC! error
	 •	 if rows or columns are entered as decimals, the values used will be truncated to the number before the decimal point (e.g. 3.9999999 will be 	
		 treated as 3)
	 •	 if rows or columns is a value less than 1, #CALC! will be returned
	 •	 if integer is set to TRUE and either min or max is not an integer, this will generate an #VALUE! error
	 •	max must be greater than or equal to min, else the error #VALUE! is returned.

When we originally discussed the RANDARRAY function, we used this rather comprehensive example to create a list of random integers between
two values:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Originally, the formula in cell F44 was

=ROUNDDOWN(RANDARRAY(H36,H37)*(H39-H38+1),0)+INT(H38)

Now, it’s much easier:

The “new improved” formula in cell F45 (it’s moved down a row due to the additional argument required in cell H40) is simply

=RANDARRAY(H36,H37,H38,H39,H40).

This is much simpler – and pretty cool.

For a final example, imagine you are a schoolteacher and you have 10 five-year-old children:

For each of the next 10 weeks, you have topics you want one of them to present on:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

I can use RANDARRAY in tandem with SORTBY to determine a presentation order for the term:

Oh dear. I do hope Diana has prepared well or it could all end in tears. She could try swapping with Horace, I suppose. On a serious note, the formula

=SORTBY(F63:F72,RANDARRAY(COUNTA(F63:F72)))

sorts the ‘Child’ order randomly (and a similar formula is used for ‘Topic’ too). In a past life, as an independent expert, I once had to attest that drug
testing was being performed entirely randomly, i.e. free from any material bias. SORTBY(RANDARRAY) dries up that well for me once and for all.

Death of Data Tables and PivotTables?

I near the end of this rather long article on an interesting note or two.
There are some significant ramifications for Excel, once these functions
and features roll out and become Generally Available (this does assume
the “final” versions of everything highlighted here do not change
drastically).

Let me explain.

I begin with a two-dimensional Data Table (ALT + D + T) with an old
favourite for this sort of thing, calculating monthly payments on various
loan amounts over various durations.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

I have no plans to go through Data Tables here, suffice to say they are a great tool for “what-if?” analysis, albeit they can consume vast quantities of
memory. This summary table shows how the monthly instalments would vary for different terms (in years) and different amounts borrowed.

Now, take a look at using three Dynamic Array formulae:

Can you spot the difference? In the second table, I have highlighted three cells:

	 •	G38 contains the formula =SEQUENCE(1,6,10000,10000)
	 •	F39 contains the formula =SEQUENCE(6)
	 •	G39 contains the formula =-PMT(Loan_Rate/Months_in_Year,F39#*Months_in_Year,G38#). See how using the Spilled Range Operator (‘#’) 	
		 makes all the difference?

That’s it! Now I am not saying all Data Tables may be replaced by Dynamic Array formulae, but can you see the future? And guess what, it doesn’t
stop there. Let me replicate one feature in Excel many of us are familiar with: the PivotTable…

In this illustration, I have created a 1,200-record Table (CTRL + T):

It’s all made up randomly generated data, and you will just have to guess who I support. The important thing to note is I have created a Table, called
Football_Data, so I may add records and the Table will extend automatically.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Next, I created a “Pseudo PivotTable”:

This was created using three Dynamic Array formulae (again, highlighted):

	 •	M12 contains the formula =TRANSPOSE(UNIQUE(SORTBY(Football_Data[Month],Football_Data[Month No]))), which sorts the months into 	
		 the required order
	 •	 L13 contains the formula =SORT(UNIQUE(Football_Data[Football Club])), which simply sorts the clubs into alphabetical order
	 •	M13 contains the formula =SUMIFS(Football_Data[Pts Achieved],Football_Data[Football Club],L13#,Football_Data[Month],M12#), which 	
		 spills out the points earned each month using a standard SUMIFS formula and the Spilled Range Operator (‘#’).

Think about it. I have created a formulaic PivotTable which calculates no discernibly slower than the real thing. However, the source data may be
extended, values may change and I don’t need to hit ‘Refresh’. Is this the end for PivotTables?

It’s easy to get carried away. Dynamic Array formulae make league tables a breeze:

However, rather than get side-tracked, I’d
rather stay “on track” with PivotTables and
finish this section unpivoting the PivotTable
we have just created (the references have
changed as they are on a different worksheet
in my example): >

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Unpivoting can be a nightmare, but it is possible. You don’t need to use Dynamic Arrays to do it, but I will to showcase them:

There is a hidden formula in cell E45. You can see why it is hidden – for those of you with a nervous disposition, please look away now:

=INDEX(SORT(G12#&" - "&F14:F37),ROUNDUP(SEQUENCE(COUNTA(F14:F37)
*COUNT(G12#))/COUNT(G12#),0),MOD(SEQUENCE(COUNTA(F14:F37)*COUNT(G12#))

-1,COUNT(G12#))+1).

Oh dear. That’s a horror. Rather than write 1,000 words trying to explain
this, let me detail the concept instead. SORT(G12#&" - "&F14:F37)
provides every combination of Month Number concatenated with a
Football Club, separated by a “ – “ delimiter, e.g.

1 – Aston Villa, 2 – Aston Villa, …, 10 – Aston Villa, 1 – Birmingham City,
2 – Birmingham City, …

The problem is SORT(G12#&" - "&F14:F37) spills this into a 10-column
by 24-row array. I want it as a list, so the entire rest of the formula
simply forces the array down a column of 240 rows instead. INDEX is
used to locate the next record in the array, with contrived formulae to
determine the row and column numbers of the virtual grid.

SUMIFS is used to create the points total for each row, and to be honest,
simpler formulae could have been used elsewhere too. But that’s my
point. As I have written this article, it’s hard not to get carried away
with all this and try and do everything in Dynamic Arrays. I have worked
for years with Excel and been a keen advocate for keeping everything
simple. Dynamic Arrays scare me that we may not help ourselves and
write monsters like the formula above.

Maybe Excel’s simpler functions and features will live on after all.

Calculation Order Concern

If it feels like you have aged a year since you started reading this, you
probably have. There’s a lot to get excited about and I have highlighted
some of the issues too – many of which I am sure will be ironed out by
the time everything becomes Generally Available. However, I am not

sure the following concern will be going away any time soon.

When I calculate something in Excel, if I use the same formula, I must get
the same answer, right? Well – not necessarily. Consider the following:

In the example above, Calculations 1 and 2 are identical but deliver different results (i.e. different #SPILL! errors). Why?

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	 In Calculations 1 and 2, both values for Formula 1 and Formula 2 were originally set to 1. This causes no #SPILL! errors
	 •	 In Calculation 1, the value for Formula 2 (cell H13) was then changed to 4 with no error
	 •	 Then, in Calculation 1, the value for Formula 1 (cell H12) was changed to 3. This caused the resultant #SPILL! error in cell K16
	 •	Next, in Calculation 2, the value for Formula 1 (cell H27) was changed to 3 with no error
	 •	 Then, in Calculation 2, the value for Formula 2 (cell H28) was changed to 4. This caused the resultant #SPILL! error in cell I33.

I am not sure what the solution is for this problem. Technically, #SPILL!
is working correctly, but it doesn’t seem right that two results may be
generated in this instance depending upon what input I change first. The
jury is out on this one.

As at the time of writing, all the features, functions and error messages

are rolling out into the wonderful world of Office 365 (recently rebadged
as Microsoft 365). Many users should now have them. Start getting
excited now and consider taking the leap to Microsoft’s subscription
model. These are just a taste of some new functions to come to make a
truly “dynamic” spreadsheet.

Top 3 Articles: #1 Calculating Interest without Circularity

For our 100th newsletter, we’ve decided to reproduce the three articles that have produced the most feedback in the past 99 issues. We are counting
them down in reverse order. Here is the top dog, often first answer on Google too…

In a financial model, it is commonplace to have to calculate interest. For
this illustration, let’s assume we are calculating interest received on the
business’s average cash balance for certain periods of time (it could just

as simply be interest paid on a debt balance, etc.). This gives rise to a
perceived circular logic:

This problem can be solved algebraically in, er, a relatively
straightforward manner without creating circularities – and is therefore
our recommended approach.

In a newsletter, we wouldn’t normally publish the following, but the
derivation of the formula has proved to be one of our most popular

web pages (see www.sumproduct.com/thought/interest-received).
Therefore, we apologise for the following mathematical assault
(for those not interested in the derivation, simply skip to the end)
– unfortunately, Excel modelling sometimes boils down to solving
simultaneous equations!

Let:

OB = opening cash balance for the period

CB = closing cash balance for the period

M = non-interest cash movement for the period

I = interest cash movement for the period

r = interest rate

t = tax rate (it is assumed this cannot equal 100%)

x = proportion into the period that the non-interest cash movements are assumed to occur, e.g.

•	 If x = 0%, this means the movement occurred at the start of the period
•	 If x = 100%, this means that the movement occurred at the end of the period
•	 If x = 50%, this means that the movement occurred midway through the period

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought/interest-received

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

So,

Therefore,

Hence, we can calculate interest from this final equation and have no circular references or goal seek. Please see www.sumproduct.com/thought/
interest-received for an example Excel file that illustrates this technique:

(1 – (1 – x).(1 – t).r)

CB = OB + M (1 – t) + I (1 – t)		 and	

I (1 – t) = (x.OB + (1 – x).CB).r.(1 – t) so (as t ≠ 100%)

I = (x.OB + (1 – x).CB).r

= (x.OB + (1 – x).(OB + M (1 – t) + I (1 – t))).r

= OB.r + (1 – x).M.(1 – t).r + (1 – x).I.(1 – t).r

I.(1 – (1 – x).(1 – t).r) = OB.r + (1 – x).M.(1 – t).r	

<=> I = OB.r + (1 – x).M.(1 – t).r

Best Excel Tip Ever – The Top Five

In newsletters gone by, we asked you – our readers – to vote for your favourite Excel tips of all time. Many moons ago we published the Top 5 – which
we reproduce here, complete with old school screenshots. You have been warned!!

Number 5: Close Files, Not Excel

Ever closed that final file in Excel 2013 or later only for the application
to close down as well? This is the Excel way of the world but there is
a workaround and we thank fellow MVP Wyn Hopkins once more of
Access Analytic for bringing this to our attention.

In Excel 2013 and later, simply right-click on the Quick Access Toolbar
and select ‘Customize Quick Access Toolbar…’ viz.

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought/interest-received
http://www.sumproduct.com/thought/interest-received

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In the subsequent dialog box, select ‘All Commands’ in the ‘Choose commands from’ drop down box and then select ‘Close’ (with the folder icon, please
see the illustration below). Next, click on the ‘Add>>’ button to add it to the Quick Access Toolbar and finally click on ‘OK’ to exit the dialog box.

From now on, simply click on this ‘Close’ icon in the Quick Access Toolbar and you will never have to say goodbye to Excel again. Breaking up can just
be so very hard to do!

Number 4: Finding Inconsistent Formulae Easily

Kim Ho and Minh Lee were two that suggested this one. Consider the following block of data:

Let’s assume this data is supposed to refer to a similar block of data elsewhere. How can we tell if the formula has been copied across and down
correctly? Inspection by eye achieves nothing here.

One option is to use the keyboard shortcut CTRL + ` (the character is the key to the left of the 1 on a standard QWERTY keyboard):

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This shortcut toggles cell values with their content (i.e. formulae). This
will show formulae which have not been copied across properly, but
this is still fraught with user error (can you spot the relevant cells?) and
would be cumbersome with vast arrays of data.

Instead, there is a simpler, automatic approach. Select all of the data
(click anywhere in the range and press CTRL + * – see below for more on
this shortcut). Then use the keyboard shortcut CTRL + \ viz.

This automatically selects all of the cells whose contents are different
from the comparison cell in each row (for each row, the comparison cell
is in the same column as the active cell).

CTRL + SHIFT + \ selects all cells whose contents are different from the
comparison cell in each column (for each column, the comparison cell

is in the same row as the active cell). In this example, where a formula
is supposed to be copied across and down, there will be no difference.

These cells can now be highlighted and reviewed at leisure.

Number 3: The 39 Steps of Range Names

Excel MVP Bob Umlas was a great proponent of the following tip for identifying range names quickly.

An interesting quirk relating to range names is what happens if you actually reduce the scale of Zoom View (ALT + W + Q) to 39% or below:

It can be a simple way of tracking down some of those pesky critters.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Number 2: Selecting an Active Range

Number 1: Demonic Data Validation

Interestingly, this one was most popular with the Excel MVPs, including Ken Puls and Frederic le Guen. Consider you have been working with an
Excel range.

We have some twisted individuals reading these newsletters! By far and
away the most popular ‘trick’ (in all sense of the word!) was this monster
first divulged in our very first newsletter – so it seems appropriate to
bring it up once more in our 100th! We have elected not to name all the
people who suggested this – partly to save printing costs and partly to
protect the guilty. You know who you are!!

Data Validation is a useful way to control what end users can type into

a worksheet cell (see www.sumproduct.com/thought/data-validation).
You can use this functionality to play a trick. Please use this at your own
risk: if you get fired, you will get no sympathy here.

If someone is unfortunate to leave a spreadsheet unprotected, simply
highlight the whole worksheet and then activate Data Validation (ALT +
D + L). In the ‘Settings’ tab, select settings similar to the following (the
aim is to pick a number the user won’t use):

Clicking anywhere in this range and then pressing CTRL + * will then select the whole range,

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought/data-validation

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Then, select the ‘Error Alert’ tab:

Now, de-select the range and wait for your victim to use the worksheet. As soon as they type an invalid entry, they will be greeted with the following
error alert:

Who says spreadsheets can’t be fun..?

Beat the Boredom Challenge

With many of us currently “working from home” / quarantined, there are only so Zoom / Teams calls and virtual parties you can make before you
reach your (data) limit. Perhaps they should measure data allowance in blood pressure millimetres of mercury (mmHg). To try and keep our readers
engaged, we will continue to reproduce some of our popular Final Friday Fix challenges from yesteryear in this and upcoming newsletters. One
suggested solution may be found later in this newsletter. Here’s this month’s…

This time, we are drawing the problem from our consulting work. The
problem here relates to data validation. Normally, you can use data
validation to restrict inputs to only values that come from a list. However,
what if you want values from your data validation to subsequently
populate your list?

The request that we had was innocuous enough. We were required to
create a data validation input cell that will take values from a list and
populate a dropdown. If a value is entered that does not exist in the list,

we want a prompt to check whether this value is correct, or whether it
was entered in error. This should work similar to the “Warning” option
of data validation which will allow you to enter a value and keep it with a
warning message, despite not meeting the data validation criteria.

Here’s the tricky thing though. As values are entered, any new values
should be included into the data validation list for future reference.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This leaves us in a sticky situation, because a formula that adds a new
value to the data validation list will no longer trigger the warning criteria
in the data validation. That is, whilst the value might not exist in the data
validation list when you are typing it in, a formula-driven list will pick up
the value before the data validation check is applied, thus ignoring the
data validation effectively and allowing the new value to be entered in
without warning.

So, this is the challenge this month: can you find a solution that will allow
you to enter a value using a drop down list, check if manually entered
items are intended to be added to the list, and allow users to cancel their
actions if entered in error?

Sound easy? Try it. One solution just might be found later in this
newsletter – but no reading ahead!

Visual Basics

We thought we’d run an elementary series going through the rudiments of Visual Basic for Applications (VBA) as a springboard for newer users. This
month, we thought we would look at “do-ing” some events...

There are a number of different ways that we can refer to Excel cells in a
worksheet. In this series, we’ve been using a fairly consistent approach to
referencing cell ranges – that is, using the Range object available in VBA.

However, there are a few other options that are available at your
disposal that you may run across. It’s important to understand how
these different codes work, so we’d like to list out a few for you:

So you can use any of these different approaches to refer to different cells, named ranges, rows and columns. For example, you could use:

	 •	 Range(“C4”).Value = 10
	 •	 Cells.ClearContents
	 •	 [MyTargetCell].PasteSpecial xlPasteAll
	 •	 Columns(“C”).Delete

Hopefully this will help to make sense of the macros that you see in your day-to-day environment!

More next time.

Power Pivot Principles

We continue our series on the Excel COM add-in, Power Pivot. This month, we consider hoe CALCULATE can benefit from connected tables.

In last month’s article, we created relationships between all of the imported tables in Power Pivot; with these links we can now create measures that
utilise these links.

Let’s create the measure ‘Promotion Sales’ which we envisage to calculate the total amount of sales that were made under the promotion key of ‘14’:

=CALCULATE([Sales],'Promotion Details'[PromotionKey]=14)

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The CALCULATE function is not limited to using filters from the same table as it’s expression, it can accept filters from other tables as well. To show
this, let’s insert our new measure into our PivotTable:

Thanks to linked tables we can now see how much sales were made with promotions throughout the year. Aren’t connected tables great?

More Power Pivot Principles next month.

Power Query Pointers

Each month we’ll reproduce one of our articles on Power Query (Excel 2010 and 2013) / Get & Transform (Office 365, Excel 2016 and 2019) from www.
sumproduct.com/blog. If you wish to read more in the meantime, simply check out our Blog section each Wednesday. This month, we look at how
Power Query may reduce the size of a PivotTable workbook.

In other articles, we have focused on how well Power Query and Power Pivot work together. Power Query is not exclusive to Power Pivot though,
as it may be used with ordinary PivotTables. There is a good reason for doing this too, which we’ll reveal at the end. Talk about cliff-hangers, eh?

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/blog
http://www.sumproduct.com/blog

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

I start with data that we have copied (not uploaded using Power Query) from an Items table, just to provide some typical data that we might like to
put in a PivotTable.

All the data has been copied and pasted so that there are no formulae. From another blank workbook, we use Power Query to connect to this
workbook. In this new workbook, on the Data tab, choose ‘New Query’ and select ‘From File’ and then ‘From Workbook’ on the dropdown.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

We may select the original workbook.

We don’t want to load the data, we just want to make a connection to it, so we’ll choose the ‘Load To…’ option.

Choose ‘Only Create Connection’ – we want the connection to be available when we create a PivotTable, but we don’t need to load the data to the
workbook. To create the PivotTable, go to the Insert tab and in the Tables section choose PivotTable:

Select the ‘Use an external data source’ option and choose the connection.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Our connection is at the top, ‘Query – Sheet1’, so we’ll open this and create a simple PivotTable as shown below.

So, what is the advantage of using Power Query? Well, for today’s example, our data file was huge – over a million rows. This is how each step has
been stored:

	 •	 step 1 is the data in the workbook
	 •	 step 2 is my connection only query and the data shown as a PivotTable.

Therefore, using Power Query is one way to reduce the size of the PivotTable workbook. There are other ways, but Power Query will also allow us
to clean and transform the data prior to creating a PivotTable.

More next month!

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Power BI Updates

The A to Z of Excel Functions: FIXED

Unfortunately, the updates have come out after the printing deadline for this newsletter, but don’t worry, we’ll report them all in next month’s
newsletter.

Given we have such an action-packed 100th issue this month, there is only time for one (sorry!).

This function rounds a number to the specified number of decimals, formats the number in decimal format using a period (full stop, “.”) and commas,
and returns the result as text.

The FIXED function employs the following syntax to operate:

FIXED(number, [decimals], [no_commas]).

The FIXED function has the following arguments:

	 •	number: this is required and represents the number you wish to round and convert to text
	 •	decimals: this is optional and represents the number of digits to the right of the decimal point
	 •	no_commas: this is also optional. This is a logical value that, if TRUE, prevents FIXED from including commas in the returned text.

It should be noted that:

	 •	 numbers in Microsoft Excel can never have more than 15 significant digits, but decimals may be as large as 127
	 •	 if decimals is negative, number is rounded to the left of the decimal point (e.g. 10’s, 100’s, …)
	 •	 if you omit decimals, it is assumed to be 2 (not zero)
	 •	 if no_commas is FALSE or omitted, then the returned text includes commas as usual
	 •	 the major difference between formatting a cell containing a number by using a command (e.g. on the ‘Home’ tab, in the ‘Number’ group, 	
		 click the arrow next to ‘Number’, and then click ‘Number’) and formatting a number directly with the FIXED function is that FIXED converts its 	
		 result to text. A number formatted with the ‘Cells’ command is still a number.

More next month we’re sure!

”Can we fix it?”

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Please see our example below:

More Excel Functions next month (don’t worry, there will be more than one!)…

Beat the Boredom Suggested Solution

Earlier in this month’s newsletter, we posed an interesting problem. Data
validation warnings can help you check a value you enter into a cell, ensuring
that it either comes from a pre-defined list or to confirm that you want
to add your value to the cell. However, the problem arises in this specific

scenario, where a new value will add to the list in a dynamic way, because
a formula-driven list will pick up the value before the data validation check
is applied. Because of this, when the data validation is checked, it sees the
value in the list, and proceeds to treat it as a valid value.

So, how do we get around this?

First of all, we need to create a dynamic list using range names. If you don’t know what Dynamic Range Names are, please check out the following
link. In particular, we’re going to use the OFFSET approach.

To begin, let’s create a counter to keep track of which names already exist in the list. This will form the basis of the named range. We can use the formula

=IF(COUNTIF(C2:C3,[@Name])=1,MAX(D2:D2)+1,0)

The idea is that we’re going to look through the Name column and check
to see if this is the first instance of the name appearing. If so, we’re going
to increment a counter. Thus, if this is a value contains the fifth unique
name in the list, it will have a counter result of ‘5’.

Elsewhere in the spreadsheet, we may create an index that looks at the
numbers we have assigned, and form them into a list. This is simply an

INDEX(MATCH) function to pull things into line, such as

=IFERROR(INDEX(Table2[Name],MATCH(G3,Table2[Counter],0)),"")

The MATCH function finds the first instance of the name, and the INDEX
function pulls it into a table so that we can put it into our named range
accordingly.

So far, so good. Now, here’s where it gets tricky. Adding a new name
updates the list of names faster than the data validation can check for,
so it won’t warn us when we’re putting a new name in. To get around
this and provide the warning that we’re looking for, we’re going to need
a macro to help us out.

The macro is going to run every time we make a change to the worksheet,
to test if we actually want to keep or reject the value that we’ve just
entered. We’ll check whether the change exists in the area that we’re
targeting, and if not, then we’ll ignore the rest of the macro. We can do
this with the following code (assuming that your data validated cells are
in the range called ‘List_Names’:

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought/dynamic-range-names

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Once we have identified that we’re working in the data validated cells,
we need to check off a few things that will invalidate our results. If we’re
selecting multiple cells, that will cause us issues, so we need to set up an
error trap if that’s the case. Also, if we’re deleting a value, rather than

adding a new name in place, we don’t want to run the code either – no
need to data validate our deletion. Therefore, we need the following
items as well:

Now we are at the stage where we need to test if our names have
appeared before. We can call a MATCH function to check where the

name appears in our list, and an INDEX(MATCH) to determine how many
times it’s appeared so far.

Here’s the sneaky bit now. If the name we’ve just entered appears exactly
once, then we know that it didn’t exist previously in the list. Therefore,
we can test to see if the number of times it’s appears is greater than one
[1]. If so, then we don’t need to do run any warning, because the data
validation is working the way we want it to.

However, if there is exactly one item in the list, then we want to pop up
a message box and check to see if we really do want to enter it and add
it to the list. If not, we should delete the value that was just entered.
That’s what this next block of code does:

A MsgBox function will return a value based on what button is clicked. In
our case, clicking the ‘Yes’ button when it asks you if you want to continue
gives us a value of ‘6’, which we can check for. If the value returned

doesn’t equal six (e.g. if the user clicks on ‘No’, ‘Cancel’ or anything else),
then the cell we’re looking at will have the contents removed, and it will
effectively undo the act of typing a new name in place.

Finally, we just need to clean up after ourselves to re-enable events (we
disabled it initially because deleting the value would also trigger this

check) and to provide a break place (here called ExitSub) to allow errors
to skip through the main code content.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

How did you go? Did you find a formula-based solution that didn’t require VBA? Let us know, we’d be keen to hear if you think you have a better
way to do this!

Until next time.

Location Course Date Date Duration Duration

Online (Australia) Power Pivot, Power Query and Power BI 7 - 9 Apr 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 14 Apr 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 15 - 16 Apr 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 10 - 12 May 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 17 May 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 18 - 19 May 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 15 - 17 Jun 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 22 Jun 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 23 - 24 Jun 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 19 - 21 Jul 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 26 Jul 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 27 - 28 Jul 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 23 - 25 Aug 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 30 Aug 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Upcoming SumProduct Training Courses - COVID-19 update
Due to the COVID-19 pandemic that is currently spreading around
the globe, we are suspending our in-person courses until further
notice. However, to accommodate the new working-from-home
dynamic, we are switching our public and in-house courses to
an online delivery stream, presented via Microsoft Teams, with
a live presenter running through the same course material,
downloadable workbooks to complete the hands-on exercises
during the training session, and a recording of the sessions for

your use within 1 month for you to refer back to in the event
of technical difficulties. To assist with the pacing and flow of
the course, we will also have a moderator who will help answer
questions during the course.

If you're still not sure how this will work, please contact us at
training@sumproduct.com and we'll be happy to walk you
through the process.

mailto:contact@sumproduct.com
http://www.sumproduct.com

Link to Others
These newsletters are not intended to be
closely guarded secrets. Please feel free
to forward this newsletter to anyone you
think might be interested in converting to

“the SumProduct way”.

If you have received a forwarded
newsletter and would like to receive
future editions automatically, please

subscribe by completing our newsletter
registration process found at the foot of
any www.sumproduct.com web page.

Any Questions?
If you have any tips, comments or queries
for future newsletters, we’d be delighted
to hear from you. Please drop us a line at

newsletter@sumproduct.com.

Our Services
We have undertaken a vast array of
assignments over the years, including:
· 	 Business planning
· 	 Building three-way integrated 		
	 financial statement projections
· 	 Independent expert reviews
· 	 Key driver analysis
· 	 Model reviews / audits for internal 	 	
	 and external purposes
· 	 M&A work
· 	 Model scoping
· 	 Power BI, Power Query & Power Pivot
· 	 Project finance
· 	 Real options analysis
· 	 Refinancing / restructuring
· 	 Strategic modelling
· 	 Valuations
· 	 Working capital management
If you require modelling assistance of any
kind, please do not hesitate to contact us
at contact@sumproduct.com.

Training
SumProduct offers a wide range of
training courses, aimed at finance
professionals and budding Excel experts.
Courses include Excel Tricks & Tips,
Financial Modelling 101, Introduction to
Forecasting and M&A Modelling.

Drop us a line at training@sumproduct.com
for a copy of the brochure or download
it directly from
www.sumproduct.com/training.

Check out our
more popular
courses in
our training
brochure:

There are c.550 keyboard shortcuts in Excel. For a comprehensive list, please download our Excel file at
www.sumproduct.com/thought/keyboard-shortcuts. Also, check out our new daily Excel Tip of the Day feature on the
www.sumproduct.com homepage.

Key Strokes
Each newsletter, we’d like to introduce you to useful keystrokes you may or may not be aware of. This year, we thought we’d revisit
each function key in depth (there are 12 – one for each month of the year!). Given it’s March, let’s look at the F3 tips:

Keystroke What it does

F3 Paste names

CTRL + F3 Open Name Manager

SHIFT + F3 Function wizard

CTRL + ALT + F3 New name

CTRL + SHIFT + F3 Create names

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

contact@sumproduct.com
www.sumproduct.com
+61 3 9020 2071

Sydney Address:	 SumProduct Pty Ltd, Suite 803, Level 8, 276 Pitt Street, Sydney NSW 2000
New York Address:	 SumProduct Pty Ltd, 48 Wall Street, New York, NY, USA 10005
London Address:	 SumProduct Pty Ltd, Office 7, 3537 Ludgate Hill, London, EC4M 7JN, UK
Melbourne Address:	SumProduct Pty Ltd, Ground Floor, 470 St Kilda Road, Melbourne, VIC 3004
Registered Address:	SumProduct Pty Ltd, Level 14, 440 Collins Street, Melbourne, VIC 3000

Location Course Date Date Duration Duration

Online (Australia) Financial Modelling 31 Aug - 1 Sep 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 29 Sep - 1 Oct 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 6 Oct 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 7 - 8 Oct 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 3 - 5 Nov 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 10 Nov 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 11 - 12 Nov 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

Online (Australia) Power Pivot, Power Query and Power BI 8 - 10 Dec 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 3 Days

Online (Australia) Excel Tips and Tricks 15 Dec 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 1 Day

Online (Australia) Financial Modelling 16 - 17 Dec 2021 09:00-17:00 AEDT (-1 day) 22:00-07:00 GMT 2 Days

