
NEWSLETTER #83 - October 2019

Big news this month – Excel has two new functions to add to its armoury. You can meet them
below. They may only be in Preview mode at the time of writing, but they are going to have a massive impact upon the Excel community
when fully released into the wild…

There are also the usual suspects: Keyboard Shortcuts, Visual Basics, Power Pivot Principles, Power Query Pointers and
the standard 20,000 Power BI updates.

Until next month.

Meet the New X-Men: XLOOKUP and XMATCH

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

www.sumproduct.com | www.sumproduct.com/thought

Liam Bastick, Managing Director, SumProduct

Late August 2019 and Microsoft has added two new functions, XLOOKUP and XMATCH. For reasons that will become clear, here I will mainly consider
the former function – because once you understand XLOOKUP, XMATCH becomes obvious (nothing personal, XMATCH).

Therefore, let’s take a look at the new addition to the LOOKUP family. I so wanted it to be called FLOOKUP but it was not to be…

Ask anyone and they will tell you two “truths”:

	 1.		 They are a better than average driver and everyone else is an idiot on the roads
	 2.		 They are a better than average Excel user because they know how to use VLOOKUP.

It’s well known I hate VLOOKUP with a passion and if anything can come along and hurry its demise, well, I shall welcome it with open arms. Ladies
and gentlemen, may I present the future of looking up for the masses – XLOOKUP. Hopefully, it will make an “ex” of VLOOKUP!

Why I Loathe VLOOKUP

Just as a recap, let me just summarise the resident incumbent:

VLOOKUP(lookup_value, table_array, column_index_number, [range_lookup])

has the following syntax:

	 •	 lookup_value: what value do you want to look up?
	 •	 table_array: where is the lookup table?
	 •	 column_index_number: which column has the value you want returned?
	 •	 [range_lookup]: do you want an exact or an approximate match? This is optional and to begin with, I am going to ignore this argument exists.

HLOOKUP is similar, but works on a row, rather than a column, basis.

To show my disdain, I am going to use VLOOKUP throughout to keep things simple. VLOOKUP always looks for the lookup_value in the first column
of a table (the table_array) and then returns a corresponding value so many columns to the right, determined by the column_index_number.

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/thought

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

In this above example, the formula in cell G25 seeks the value 2 in the first column of the table F13:M18 and returns the corresponding value from
the eighth column of the table (returning 47).

Pretty easy to understand; so far so good. So, what goes wrong? Well, what happens if you add or remove a column from the table range?

Adding (inserting) a column gives us the wrong value:

With a column inserted, the formula contains hard code (8) and therefore, the eighth column (M) is still referenced, giving rise to the wrong value.
Deleting a column instead is even worse:

Now there are only seven columns so the formula returns #REF! Oops.

It is possible to make the column index number dynamic using the COLUMNS function:

COLUMNS(reference) counts the number of columns in the reference. Using the range F13:M13, this formula will now keep track of how many
columns there are between the lookup column (F) and the result column (M). This will prevent the problems illustrated above.

But there’s more issues. Consider duplicate values in the lookup column. With one duplicate, the following happens:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, the second value is returned, which might not be what is wanted. With two duplicates:

Ah, it looks like it might take the last occurrence. Testing this hypothesis with three duplicates:

Yes, there seems to be a pattern: VLOOKUP takes the last occurrence. Better make sure:

Rats. In this example, the value returned is the fourth of five. The problem is, there’s no consistent logic and the formula and its result cannot be
relied upon. It gets worse if we exclude duplicates but mix up the lookup column a little:

In this instance, VLOOKUP cannot even find the value 2!

So, what’s going on? The problem – and common modelling mistake – is that the fourth argument has been ignored:

VLOOKUP(lookup_value, table_array, column_index_number, [range_lookup])

[range_lookup] appears in square brackets, which means it is optional. It has two values:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	 TRUE: this is the default setting if the argument is not specified. 	
		 Here, VLOOKUP will seek an approximate match, looking for the 	
		 largest value less than or equal to the value sought. 			
		 There is a price to be paid though: the values in the first column 	
		 (or row for HLOOKUP) must be in strict ascending order – this 		
		 means that each value must be larger than the value before, so no 	
		 duplicates.

		 This is useful when looking up postage rates for example where 	
		 prices are given in categories of pounds and you have 2.7lb to 		
		 post (say). It’s worth noting though that this isn’t the most 		
		 common lookup when modelling.

	 •	 FALSE: this has to be specified. In this case, data can be any which 	
		 way – including duplicates – and the result will be based upon the 	
		 first occurrence of the value sought. If an exact match cannot be 	
		 found, VLOOKUP will return the value #N/A.

And this is the problem highlighted by the above examples. The final
argument was never specified so the lookup column data has to be in
strict ascending order – and this premiss was continually breached.

The robust formula needs both COLUMNS and a fourth argument of
FALSE to work as expected:

This is a very common mistake in modelling. Using a fourth argument
of FALSE, VLOOKUP will return the corresponding result for the first
occurrence of the lookup_value, regardless of number of duplicates,
errors or series order. If an approximate match is required, the data must
be in strict ascending order.

VLOOKUP (and consequently HLOOKUP) are not the simple, easy to use
functions people think they are. In fact, they can never be used to return
data for columns to the left (VLOOKUP) or rows above (HLOOKUP).
So, what should modellers use instead..?

Even then, you’re not guaranteed a ticket to the ball as only some will receive the new function as Microsoft slowly roll out these features and
functions. Please don’t let that put you off. This feature will be with all Office 365 subscribers soon.

XLOOKUP has the following syntax:

XLOOKUP(lookup_value, lookup_vector, results_array, [match_mode], [search_mode])

On first glance, it looks like it has too many arguments, but often you will only use the first three:

	 •	 lookup_value: this is required and defines what value you want to look up
	 •	 lookup_vector: this reference is required and is the row or column of data you are referencing to look up lookup_value

There’s a new boss in town, but it’s only in selected towns presently.
This function has been released in what Microsoft refers to as “Preview”
mode, i.e. it’s not yet “Generally Available” but it is something you can
try and hunt out. Presently, just like dynamic arrays, you need to be part

of what is called the “Office Insider” programme which is an Office 365
fast track. You can register in File -> Account -> Office Insider in Excel’s
backstage area.

Introducing XLOOKUP

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	 results_array: this is where the corresponding item is you wish to return and is also required (even if it is the same as lookup_vector). This 	
		 does not have to be a vector (i.e. one row or one column of cells): it may be an array (with at least two rows and at least two columns 	
		 of cells). The only stipulation is that the number of rows / columns must equal the number of rows / columns in the column / row vector – 	
		 but more on that later
	 •	 match_mode: this argument is optional. There are four choices:
			 o	 0: exact match (default)
			 o	 -1: exact match or else the largest value less than or equal to lookup_value
			 o	 1: exact match or else smallest value greater than or equal to lookup_value
			 o	 2: wildcard match. You should use the special character ? to match any character and * to match any run of characters.
		 What’s impressive, though, is that for certain selections of the final argument (search_mode), you don’t need to put your data in 		
		 alphanumerical order! As far as I am aware, this is a first for Excel
	 •	 search_mode: this argument is also optional. There are again four choices:
			 o	 1: search first to last (default)
			 o	 -1: search last to first
			 o	 2: what is known as a binary search, first to last (requires lookup_vector to be sorted). Just so you know, a binary search is a search 	
				 algorithm that finds the position of a target value within a sorted array. A binary search compares the target value to the middle 	
				 element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the 	
				 remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found
			 o	 -2: another binary search, this time last to first (and again, this requires lookup_vector to be sorted).

While VLOOKUP is the third most used function in Excel (behind SUM and AVERAGE), it has several well-known limitations which XLOOKUP overcomes:

	 •	 it defaults to an “approximate” match: most often, users want an exact match, but this is not VLOOKUP’s default behaviour. To perform an 	
		 exact match, you need to set the final argument to FALSE (as explained earlier). If you forget (which is easy to do), you’ll probably get the 	
		 wrong answer
	 •	 it does not support column insertions / deletions: VLOOKUP’s third argument is the column number you’d like returned. Since this is a hard-	
		 coded number, if you insert or delete a column you need to increment or decrement the column number inside the VLOOKUP – hence the 	
		 need for the COLUMNS function (and the corresponding ROWS function for HLOOKUP)
	 •	 it cannot look to the left: VLOOKUP always searches the first column, then returns a column to the right. There is no way to return values 	
		 from a column to the left, forcing users to rearrange their data
	 •	 it cannot search from the bottom: If you want to find the last occurrence, you need to reverse the order of your data
	 •	 it cannot search for next larger item: when performing an “approximate” match, only the item less than or equal to the searched item can 	
		 be returned and only if correctly sorted
	 •	 references more cells than necessary: VLOOKUP’s second argument, table_array, needs to stretch from the lookup column to the results 	
		 column. As a result, it typically references more cells than it truly depends on. This could result in unnecessary calculations, reducing the 	
		 performance of your spreadsheets.

Let’s have a look at XLOOKUP versus VLOOKUP:

XLOOKUP compares favourably with VLOOKUP

You can clearly see the XLOOKUP function is shorter:

=XLOOKUP(H52,F41:F47,G41:G47)

Only the first three arguments are needed, whereas VLOOKUP requires both a fourth argument, and, for full flexibility, the COLUMNS function as
well. XLOOKUP will automatically update if rows / columns are inserted or deleted. It’s just simpler.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

HLOOKUP has similar issues:

Here, this highlights what happens if I try to deduce the student name from the Student ID. HLOOKUP cannot refer to earlier rows, just as VLOOKUP
cannot consider columns to the left. Given any unused elements of the table are ignored also, it’s just good news all round. Goodbye limitations,
hello XLOOKUP.

Indeed, things get even more interesting when you start considering XLOOKUP’s final two arguments, namely match_mode and search_mode, viz.

Notice that I am searching the ‘Value’ column, which is neither sorted nor contains unique items. However, I can look for approximate matches –
impossible with VLOOKUP and / or HLOOKUP.

Do you see how the results vary depending upon match_mode and search_mode?

The match_mode zero (0) returns #N/A because there is no exact match.

When match_mode is -1, XLOOKUP seeks an exact match or else the
largest value less than or equal to lookup_value (6.5). That would be
4 – but this occurs more than once (B and D both have a value of 4).
XLOOKUP chooses depending upon whether it is searching top down
(search_mode 1, where B will be identified first) or bottom up (search_
mode -1, where D will be identified first). Note that with binary searches
(with a search_mode of 2 or -2), the data needs to be sorted. It isn’t –
hence we have garbage answers that cannot be relied upon.

With match_mode 1, the result is clearer cut. Only one value is the
smallest value greater than or equal to 6.5. That is 7, and is related to A.
Again, binary search results should be ignored.

The match_mode 2 results are spurious. This is seeking wildcard matches,
but there are no matches, hence N/A for the only search_modes that
may be seen as creditable (1 and -1).

Clearly binary searches are higher maintenance. In the past, it was worth
investing in them as they did return results more quickly. However,
according to Microsoft, this is no longer the case: apparently, there is “…
no significant benefit to using (sic) the binary search options…”. If this is
indeed the case, then I would strongly recommend not using them going
forward with XLOOKUP.

To show how simple it now is to search from the end, consider the
following:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This used to be an awkward calculation – but not anymore! The formula is easy:

=XLOOKUP(G130,G113:G125,H$113:H$125,,-1)

It’s a “standard” XLOOKUP formula, with a “bottom up” search coerced by using the final value of -1 (forcing the search_mode to go into “reverse”).

Comparisons with LOOKUP

Whilst XLOOKUP wins hands down against HLOOKUP and VLOOKUP, the same cannot necessarily be said for LOOKUP. You may recall LOOKUP has
two forms: an array form and a vector form. As a reminder:

	 •	 an array is a collection of cells consisting of at least two rows and at least two columns

	 •	 a vector is a collection of cells across just one row (row vector) or down just one column (column vector).

The diagram should be self-explanatory:

The array form of LOOKUP looks in the first row or column of an array for the specified value and returns a value from the same position in the last
row or column of the same array:

LOOKUP(lookup_value, array)

where:

	 •	 lookup_value is the value that LOOKUP searches for in an array. The lookup_value argument can be a number, text, a logical value, or a 	
		 name or reference that refers to a value

	 •	 array is the range of cells that contains text, numbers, or logical values that you want to compare with lookup_value.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The array form of LOOKUP is very similar to the HLOOKUP and VLOOKUP
functions. The difference is that HLOOKUP searches for the value of
lookup_value in the first row, VLOOKUP searches in the first column, and
LOOKUP searches according to the dimensions of array.

If array covers an area that is wider than it is tall (i.e. it has more columns
than rows), LOOKUP searches for the value of lookup_value in the
first row and returns the result from the last row. Otherwise, LOOKUP
searches for the value of lookup_value in the first column and returns
the result from the last column instead.

The alternative form is the vector form:

LOOKUP(lookup_value, lookup_vector, [result_vector])

The LOOKUP function vector form syntax has the following arguments:

	 •	 lookup_value is the value that LOOKUP searches for in the first vector

	 •	 lookup_vector is the range that contains only one row or one column

	 •	 [result_vector] is optional – if ignored, lookup_vector is used – this is the where the result will come from and must contain the same 	
		 number of cells as the lookup_vector.

Like the default versions of HLOOKUP and VLOOKUP, lookup_value must be located in a range of ascending values.

Let me demonstrate with an example:

LOOKUP is a great function to use with time series analysis / forecasting. Dates are in ascending order and the LOOKUP syntax is remarkably simple.
As a modeller, I use it regularly when I am modelling many more forecast periods than I want assumption periods.

Here, you can see I carry assumptions only for 2020 until 2024 (the final value is 2024, just with a “+” in number formatting). The formula

=LOOKUP(G$74,$G$67:$K$68)

returns the corresponding value for the period that is either an exact match or else the largest value less than or equal to the lookup_value. LOOKUP
uses the top row of the table for looking up its data and the final row for returning the corresponding value. Simple. As for XLOOKUP:

=XLOOKUP(G$82,$G$67:$K$67,$G$68:$K$68,-1)

This formula is longer and requires two additional arguments (match_mode -1 is required to mirror the behaviour of LOOKUP). Indeed, given that an
IF statement is required to ensure no errors for earlier periods, e.g.

=IF(G$90<$G$67,$G$68,LOOKUP(G$90,G67:K68))

it may be argued that LOOKUP is a simpler function to use here than its counterpart.

This isn’t the only time LOOKUP outperforms XLOOKUP:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, we do see a limitation of XLOOKUP. Whilst the third argument of XLOOKUP, results_array, does not need to be a vector, it cannot be the
transposition of the lookup_vector. You would have to transpose it using the TRANSPOSE function, for example. This makes LOOKUP much easier
to use – compare:

=LOOKUP(H112,F105:F109,G102:K102)

with

=XLOOKUP(H112,F105:F109,TRANSPOSE(G102:K102))

In this instance, LOOKUP wins.

Useful Features of XLOOKUP

XLOOKUP can be used to perform a two-way match, similar to INDEX MATCH:

Many advanced users might use the formula

=INDEX(H40:N46,MATCH(G53,G40:G46,0),MATCH(G51,H39:N39,0))

where:

	 •	 INDEX(array, row_number, [column_number]) returns a value or the reference to a value from within a table or range (list) citing the
		 row_number and the column_number

	 •	 MATCH(lookup_value, lookup_vector, [match_type]) returns the relative position of an item in an array that (approximately) matches a 	
		 specified value. It’s most commonly used with match_type zero (0), which requires an exact match.

Therefore, this formula finds the position in the row for the student and the position in the column of the subject. The intersection of these two
provides the required result.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

XLOOKUP does it differently:

=XLOOKUP(G53,G40:G46,XLOOKUP(G51,H39:N39,H40:N46))

Welcome to the wonderful world of the nested XLOOKUP function! Here, the internal formula

=XLOOKUP(G51,H39:N39,H40:N46)

demonstrates a key difference between this and your typical lookup function – the first argument is a cell, the second argument is a column vector
and the third is an array – with, most importantly, the same number of rows as the lookup_vector. This means it returns a column vector of data, not
a single value. This is great news in the brave new world of dynamic arrays.

In essence, this means the formula resolves to

=XLOOKUP(G53,G40:G46,J40:J46)

as J40:J46 is the resultant vector of =XLOOKUP(G51,H39:N39,H40:N46). This is a really powerful – and virtually new – concept to get your head
around, that admittedly SUMPRODUCT exploits too. Once you understand this, it’s clear how this formula works and opens your eyes to the power
of nested XLOOKUP functions.

I can’t believe I am talking about the virtues of nested functions here! Let me change the subject quickly…

To show you how dynamic arrays can make the most of being able to create resultant vectors, consider the following example:

=XLOOKUP(G77,I65:L65,I66:L72)

again resolves to a vector – but this time is allowed to spill as a dynamic array. Obviously, this will only work in Office 365, but it’s a very useful tool
that might just make you think it’s time to drop that perpetual licence.

Once you start playing with the dynamic range side, you can start to get imaginative. For example:

The formula

In this illustration, I want to calculate the sales between two periods:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This might seem like a simple drop-down list using data validation (ALT + D + L), but XLOOKUP has been used in determining the list to be used for
the end months.

Let me explain. I have hidden the range of relevant dates in cell H101 spilled across

XLOOKUP can return a reference, so the formula

=XLOOKUP(G100,H94:S94,H94:S94):S94

evaluates to the row vector N94:S94 (since the start month is July). This spilled dynamic array formula is then referenced in the data validation:

(You may recall H101# means the spilled range starting in cell H101.) It should be noted that the formula =XLOOKUP(G100,H94:S94,H94:S94):S94
may not be used directly in the ‘Data Validation’ dialog, but this is a neat trick to ensure you cannot select an end month before the start month
(assuming you are a rational human being that selects the start before the end!).

The formula to sum the sales then is

=SUM(XLOOKUP(G100,H94:S94,H95:S95):XLOOKUP(G101,H94:S94,H95:S95))

Again, this uses the fact XLOOKUP can return a reference, so this formula equates to

=SUM(N95:Q95)

Easy! Now I am combining two XLOOKUP formulae with a colon (:) to form a range. This joins other illustrious functions used this way such as
CHOOSE, IF, IFS, INDEX, INDIRECT, OFFSET, SINGLE (@), SWITCH and TEXT. First nesting, now joining – what’s next?

Seeking partial matches (sounds like an unfussy dating agency!) suddenly became a lot easier too. You can use wildcards if you want to – just set
the match_mode to 2:

Partial and Exact Matching

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here, I am searching for J?n*n* - which is fine as long as you know what the wildcard characters mean:

	 •	 ? means “any character”, but just one character. If you wanted to make space for two and only two characters you would use ??
	 •	 * means “any number of characters’ – including zero.

For example, M?n*m* would identify “Manmade”, “minimum” and “Manikum” but would not accept “millennium”. Here, our formulae

=XLOOKUP(G184,H174:H179,I174:I179,2)

=XLOOKUP(G184,H174:H179,I174:I179,2,-1)

would locate the first and last items that satisfied the condition J?n*n* (i.e. “Jonathan” and “Jonny” respectively).

But what if you wanted an exact match with case sensitivity? You just have to think a little but outside of the proverbial box:

Here, we use another feature of XLOOKUP – its ability to search a virtual vector, i.e. one that has been constructed in memory, rather than physically
within the spreadsheet cells. Consider the formula

=XLOOKUP(TRUE,EXACT(H145:H154,G159),I145:I154)

Here, the interim calculation =EXACT(H145:H154,G159), looks at the range H145:H154 and deduces whether the cells are an exact match for the
selection ‘Sum Product’ in cell G159. The EXACT function would evaluate as

{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE}

Therefore, the formula coerces to

=XLOOKUP(TRUE,{FALSE; TRUE; FALSE; FALSE; FALSE; FALSE; FALSE; FALSE; TRUE; FALSE},I145:I154)

and then the formula becomes simple to understand.

No doubt there are many more great things you can do with XLOOKUP, but hey, it’s just arrived and we are only getting started!

As I said at the beginning, XLOOKUP did not land in isolation.
In addition to XLOOKUP, XMATCH has arrived with a similar
signature to XLOOKUP, but instead it returns the index
(position) of the matching item. XMATCH is both easier to
use and more capable than its predecessor MATCH.

XMATCH

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

XMATCH has the following syntax:

XMATCH(lookup_value, lookup_vector, [match_mode], [search_mode])

where:

	 •	 lookup_value: this is required and defines what value you want to look up
	 •	 lookup_vector: this reference is required and is the row or column of data you are referencing to look up lookup_value
	 •	 match_mode: this argument is optional. There are four choices:
			 o	 0: exact match (default)
			 o	 -1: exact match or else the largest value less than or equal to lookup_value
			 o	 1: exact match or else smallest value greater than or equal to lookup_value
			 o	 2: wildcard match. You should use the special character ? to match any character and * to match any run of characters.
		 Again, for certain selections of the final argument (search_mode), you don’t need to put your data in alphanumerical order
	 •	 search_mode: this argument is also optional. There are again four choices:
			 o	 1: search first to last (default)
			 o	 -1: search last to first
			 o	 2: this is a binary search, first to last (requires lookup_vector to be sorted)
			 o	 -2: another binary search, this time last to first (and again, this requires lookup_vector to be sorted).

As you can see, it’s a fairly straightforward addition to the MATCH family. It acts similarly to MATCH – just with heaps more functionality.

XLOOKUP and XMATCH open up new avenues for Excel to explore, but it must be remembered they are still in Preview and may only be accessed by
a lucky few on the Insider track. Don’t be too perturbed if your version of Excel does not recognise these functions yet.

Word to the Wise

Visual Basics

We thought we’d run an elementary series going through the rudiments of Visual Basic for Applications (VBA) as a springboard for newer users.
This month, we continue our look at control structures, and iteration control structures in particular.

In a programming, a control structure determines the order in which statements are executed. Control structures can be grouped into three main
categories:

	 1.		 Sequential: Sequential execution is where each statement in the source code will be executed one by one in a sequential order. This is the 	
			 default mode of execution

	 2.		 Selection: The selection control structure is used for making decisions and branching statements

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 3.		 Iteration: The iterative control structures are used for repetitively executing a block of code multiple times

We’ve considered them all, as this month, we take a look at the final one. In programming, a control structure determines the order in which
statements are executed. The iteration control structure is used for repetitively executing a block of code multiple times.

The iteration structure executes a sequence of statements repeatedly if a condition holds true. There are three main types of loops in VBA:

	 1.		 WHILE…WEND

The WHILE…WEND loop executes a series of statements as long as a given condition is True. The syntax is very simple:

While condition

 [statements]

Wend

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The condition must result in a Boolean value of True or False. WHILE tests the condition and if it is True then proceeds to execute the statements
inside the loop.

Sub WhileWend()

 Dim counter As Integer

 counter = 0

 While counter < 5

 counter = counter + 1

 Debug.Print counter

 Wend

End Sub

While loops are preferred when the number of iterations is unknown.
For example, modelling how many days it takes to reach sales a target,
or running through a worksheet column until it reaches an empty cell.

Notice how the condition is tested first – this means that the code will
not run at all if the condition is not met. WHILE…WEND is a remnant
from BASIC where VBA originated from. These are not as powerful as
DO…LOOP (covered soon).

The FOR…NEXT loop uses a variable, which cycles through a series of values within a specified range and the statements inside the loop is then
executed for each value.

For counter = start To end [Step step]

[statements]

Exit For

[statements]

Next [counter]

	 2.		 FOR

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Here’s a simple example:

Sub ForNext()

 Dim counter As Integer

 For counter = 1 To 5

 Debug.Print counter

 Next counter

End Sub

The STEP keyword allows the specification of how the counter changes. It defaults to an increment of 1, but it can be used for jumps and decrements.

Sub ForNextStep()

 Dim counter As Integer

 For counter = 10 To 0 Step -2

 Debug.Print counter

 Next counter

End Sub

EXIT FOR statements may be placed anywhere in the loop as an alternate way to exit. This is often used after evaluating of some condition, for
example IF…THEN, and then skips to the statements after the loop.

Sub ForNextExit()

 Dim counter As Integer

 For counter = 10 To 0 Step -2

 Debug.Print counter

 If counter = 6 Then

 Exit For

 End If

 Next counter

End Sub

EXIT FOR

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

What if an action is needed to be performed to every object in a set?

FOR EACH…NEXT loops are a great way to cycle through sets – like an array or a range. Sometimes the number of rows or columns is uncertain. It is
relatively easy to count the number of objects and set the upper bound of the FOR…NEXT loop appropriately. However, using FOR EACH…NEXT more
clearly illustrates that the instructions are happening to every object.

Example:

Sub ForEach()

 Dim myNumbers() As Variant

 myNumbers = Array(1, 5, 10, 15)

 Dim aNumber As Variant

 For Each aNumber In myNumbers

 Debug.Print aNumber * 5

 Next

End Sub

FOR EACH…NEXT

	 3.		 DO

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

DO…LOOP loops are considered the upgraded alternative to WHILE WEND. Let’s have a look at how they work:

Do [{ While |Until } condition]

			 [statements]

			 [Exit Do]

			 [statements]

Loop

How does the code change from WHILE WEND to DO…LOOP? Simply replace the WHILE with DO WHILE and WEND with LOOP. It’s as easy as that!

DO…LOOP is superior to While Wend for several reasons:

	 •		 WHILE WEND has no ability to have an EXIT
	 •		 WHILE WEND loops check for the condition prior to running – but with DO…LOOP the condition can be checked at the end. This is useful if 	
			 the code needs to be run at least once.

This is done by simply moving the “WHILE [condition]” part of the DO statement next to LOOP. The syntax changes to:

Do

[statements]

[Exit Do]

[statements]

Loop [{ While |Until } condition]

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •		 The ability to replace WHILE with UNTIL: what effect does this achieve? This essentially reverses the value of the condition to be tested.

			 WHILE executes the block of code when the condition is True and keeps executing that till the condition becomes False. Once the 	
			 condition becomes False, the loop is terminated. However, if the condition tested is initially False, the condition must be tested as:

			 DO WHILE condition = FALSE

			 UNTIL does the opposite. It executes the block of code when the condition is False and keep executing that till the condition becomes 	
			 True. Once the condition becomes True, the UNTIL loop is terminated.

			 It should be noted that the [condition] is a Boolean value, the loop can then be adjusted with the starting statement:

			 DO UNTIL condition

More next month.

Power Pivot Principles

We continue our series on the Excel COM add-in, Power Pivot. This month, we look at how to create a calculated column.

A calculated column is a simple formulaic calculation applied to an entire column that remains in the table you created it in. It can be later used by
measures and other calculated columns to create more complex expressions.

Let’s go through an example to walk through how to add a calculated column into the Power Pivot model.

Let’s say we want to add a column into the model which will calculate ‘Gross Profit’. Next to the last column of data in your Power Pivot model will
be a blank column with the title ‘Add Column’.

Example

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

=[SalesAmount]-[TotalProductCost]

The new calculated column will appear in the data model as follows:

Double click on the heading and type ‘Gross Profit’, note, ensure all columns in your Power Pivot data model have a unique name. In the formula bar,
you can type out the formula shown below or by selecting the columns of data you wish to use in the formula:

More Power Pivot Principles next month.

As this new calculated column contains a formula, it will be computed for each
row in the data set. When the underlying data is refreshed the columns are
recalculated each time.

This column may now be used in another calculated column, measure, chart, and
even PivotTable like any other column in your data model.

Another useful calculated column to have might be a year column. To create this,
add a new column, rename it ‘Year’ and use the YEAR function:

=YEAR(Sales[OrderDate])

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Power Query Pointers

Each month we’ll reproduce one of our articles on Power Query (Excel 2010 and 2013) / Get & Transform (Office 365, Excel 2016 and 2019) from
www.sumproduct.com/blog. If you wish to read more in the meantime, simply check out our Blog section each Wednesday. This month, we take a
look at pivoting a column.

Power Query’s ability to efficiently transform data is amply demonstrated by features which allow you to pivot (and unpivot) data at the touch of a
button. Let’s begin as usual with some data in an Excel worksheet.

In the ‘POWER QUERY’ tab (assuming Excel 2013), in the ‘Excel Data’ section, we’ll choose to extract the data ‘From Table/Range’:

Our data appears in a new query, which has been called ‘Pivot Column’. In the ‘Transform’ tab, there is a section which groups together the
transformations which can be applied to ‘Any Column’. We are interested in the ‘Pivot Column’ option.

mailto:contact@sumproduct.com
http://www.sumproduct.com
http://www.sumproduct.com/blog

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

‘Pivot Column’ is available as long as you haven’t selected multiple columns. You may either select a column before using ‘Pivot Column’ or it will
assume you will want to use the first column in your query. We will select expense code.

The ‘Pivot Column’ feature will remove the selected column and add
columns to the table that contain an aggregate value for each unique
value in that column. This is quite a concept to describe in one sentence,
and it best demonstrated by an example!

We have provided the names of the column (expense code), but we also
need to specify what data will be aggregated, and the function associated
with the aggregation. The data column will also be removed from our
query when the new columns are added. We will be using the amount
column as our data, which we have decided to sum viz.

As soon as we pick amount, Power Query recognises that we have chosen the datatype currency, and defaults to ‘Sum’. The other options for the
datatype are shown above. If we had chosen a text column, then the options would be different, as shown below:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

It didn’t work too well when we had two consecutive food amounts, but the other amounts are shown. We are more interested to try aggregating by
using the ‘Sum’ option, so let’s delete this step and return to the ‘Pivot Column’ screen and try again…

This time our data is all populated as expected. We have already
reordered the columns so that we can see who incurred what expense
and on what date and we may tidy it up further by removing the nulls by
using the ‘Replace Values’ facility.

Having demonstrated how easy it is to pivot columns, another nice
feature to show is how easy it is to unpivot them again. If you select our
new columns and choose to ‘Unpivot’ them using the option from within
the ‘Any Column’ section in the ‘Transform’ tab, you will get this:

Our expense code (Attribute) and the amount (Value) have been reinstated!

More next month!

Returning to our amount column, there is also an option ‘Don’t Aggregate’. This would return a grid which only has values when that particular
expense code is populated, as shown below:

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Power BI Desktop Update for September

Power BI Desktop received a makeover last month with its new, default
theme! It’s more than just redecorating though: Microsoft has doubled
the number of built-in theme options for reports. Now, if you’re a theme
author, with the new updates to the theme JSON format makes it easier
to create your own custom themes.

Another popular request was actioned in September too: Microsoft
admits it was “…thanks to an intern project…”, they are also releasing
custom format strings.

Starting with this update, installation is now smoother and more
streamlined with a single .exe installer that has all the languages
wrapped into it. This means if you’re automatically downloading it from
the Download Center each month, you’ll need to update your scripts.

Here’s the complete list of September updates:

When writing your own custom theme JSON file, it can be quite difficult
to build a theme that changes the entire look of your report. For example,
if you wanted to create a dark theme that set the page to a dark colour
and use white text on top, you’d have to change many settings through
the visual styles section of the JSON, which can be very time consuming
and prone to errors.

To help with this, Power BI Desktop has expanded the color classes
within the theme file to allow you to format many of the colours in your

theme without needing to touch visual styles. If you’re already writing
theme files, you’re likely already using a few existing color classes such as
foreground, background and tableAccent, which update various settings
within your report with one line. With this update, new color classes
have been added to that list, which as a result, means you can colour all
visual elements in a report just by setting six colours (do you know how
hard it is to check that “color” and “colour” are in the right place? – Ed.).

The color classes you now have available and what they format are as follows:

Color and text classes in themes

Reporting
	 •	 Color and text classes in themes
	 •	 New default themes
	 •	 ‘Personalized Visualization’ pane improvements (Preview)
	 	 	 o	 Unpin default visuals
	 	 	 o	 About info for visuals

Analytics
	 •	 Custom format strings
	 •	 Conditional formatting for more visual formatting options:
			 o	 Alt text
			 o	 Border colour
			 o	 Gauge colours
	 •	 Drill through discoverability improvement
	 •	 New DAX expressions: REMOVEFILTERS and CONVERT

Visualizations
	 •	 PowerApps visual now Generally Available and certified

Data connectivity
	 •	 PostgreSQL connector enhancements:
	 	 	 o	 Support for folding over Native Database queries
	 	 	 o	 DirectQuery support Generally Available

Data preparation
	 •	 Copy to clipboard from data profiling

Template apps
	 •	 Google Analytics report

Other
	 •	 Performance improvements for multi-dimensional models
	 •	 Query performance improvements for DirectQuery models.

Let’s take a look at each in turn.

	 •	 foreground
			 o	 Labels background colour (when outside data points)
			 o	 Filter pane and Filter cards font and icon colours
			 o	 Trend line colour
			 o	 Textbox default colour
			 o	 Table and matrix values and totals font colours
			 o	 Data bars axis colour			
			 o	 Card data labels
			 o	 Gauge callout value colour
			 o	 KPI goal colour
			 o	 KPI text colour
			 o	 Slicer item colour (when in Focus mode)
			 o	 Slicer dropdown item font colour
			 o	 Slicer numeric input font colour
			 o	 Slicer header font colour
	 	 	 o	 Scatter chart ratio line colour
			 o	 Line chart forecast line colour
			 o	 Map leader line colour

	 •	 foregroundNeutralSecondary
			 o	 Label colours
			 o	 Legend label colour
			 o	 Axis label colour
			 o	 Table and matrix header font colour
			 o	 Gauge target and target leader line colour
			 o	 KPI trend axis colour
			 o	 Slicer slider colour
			 o	 Slicer item font colour
			 o	 Slicer outline colour
			 o	 Line chart hover colour
	 	 	 o	 Multi-row card title colour
			 o	 Ribbon chart stroke colour
			 o	 Shape map border colour
	 	 	 o	 Button text font colour
	 	 	 o	 Button icon line colour
	 	 	 o	 Button outline colour

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

	 •	 foregroundNeutralTertiary
			 o	 Legend dimmed colour
			 o	 Card category label colour
	 	 	 o	 Multi-row card category labels colour
	 	 	 o	 Multi-row card bar colour
	 	 	 o	 Funnel chart conversion rate stroke colour

	 •	 backgroundLight
	 	 	 o	 Filter card background colour for applied filters
	 	 	 o	 Axis gridline colour
			 o	 Table and matrix grid colour
	 	 	 o	 Slicer header background colour (when in Focus mode)
	 	 	 o	 Multi-row card outline colour
	 	 	 o	 Shape fill colour
	 	 	 o	 Gauge arc background colour

	 •	 backgroundNeutral
			 o	 Table and matrix grid outline colour
			 o	 Shape map default colour
	 	 	 o	 Ribbon chart Ribbon fill colour
	 	 	 	 (when match series option is turned off)
	 •	 background
	 	 	 o	 Labels background colour (when inside data points)
			 o	 Filter pane and available Filter card background colour
			 o	 Slicer dropdown items background colour
			 o	 Donut chart stroke colour
			 o	 Treemap stroke colour
			 o	 Combo chart background colour
	 	 	 o	 Button fill colour

	 •	 TableAccent
			 o	 Overrides table and matrix grid outline colour when present.

When writing your own custom theme JSON file, it can be quite difficult to build a theme that changes the entire look of your report. For example,
if you wanted to create a dark theme that set the page to a dark colour and use white text on top, you’d have to change many settings through the
visual styles section of the JSON, which can be very time consuming and prone to errors.

To help with this, Power BI Desktop has expanded the color classes within the theme file to allow you to format many of the colours in your theme
without needing to touch visual styles. If you’re already writing theme files, you’re likely already using a few existing color classes such as foreground,
background and tableAccent, which update various settings within your report with one line. With this update, new color classes have been added
to that list, which as a result, means you can colour all visual elements in a report just by setting six colours (do you know how hard it is to check that
“color” and “colour” are in the right place? – Ed.).

In addition to color classes, text classes have also been added to make it
easier and quicker to set text styles. There are four primary text classes
that adjust a total of 14 total text classes. You can set the font family, font
size and font color for each text classes. The four main text classes are:
‘Title’, ‘Label, ‘Callout’ and ‘Header’.

The Title and Label classes have several secondary classes that are
automatically derived from the primary class settings, but they may be
formatted individually. For example, if you set the Label class, which,

for example, is used for the values in a table to 10pt, a ‘Small Label’,
which is, for example, used in the search box text in slicers, would be
automatically set to 9pt. The goal of the primary / secondary text classes
is to make it quick and easy set the text classes, which still maintaining a
visual hierarchy to the text.

The below table shows the primary classes with example settings and the
secondary classes with the settings that make them unique compared to
their associated primary class.

Primary class Secondary classes Class name in JSON Settings Associated visual objects

Callout N/A callout DIN
#252423
45pt

Card data labels
KPI indicators

Header N/A header Segoe UI Semibold
#252423
12pt

Key influencers headers

Title title DIN
#252423
12pt

Category axis title
Value axis title
Multi-row card title *
Slicer header

 Large title largeTitle 14pt Visual title

Label label Segoe UI
#252423
10pt

Table and matrix column headers
Matrix row headers
Table and matrix grid
Table and matrix values

Semibold semiboldLabel Segoe UI Semibold Key influencers profile text

Large largeLabel 12pt Multi-row card data labels

Small smallLabel 9pt Reference line labels *
Slicer date range labels
Slicer numeric input text style
Slicer search box
Key influencers influencer text

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

* The font color for these settings is based on the data colours, not the text class settings.

For example, here’s a small theme that sets some of these properties:

{

 "name": "NewThemeOptions",

 "foreground": "#252423",

 "foregroundNeutralSecondary": "#605E5C",

 "foregroundNeutralTertiary": "#B3B0AD",

 "background": "#FFFFFF",

 "backgroundLight": "#F3F2F1",

 "backgroundNeutral": "#C8C6C4",

 "tableAccent": "#118DFF",

 "textClasses": {

 "callout": {

 "fontSize": 45,

 "fontFace": "DIN",

 "color": "#252423"

 },

 "title": {

 "fontSize": 12,

 "fontFace": "DIN",

 "color": "#252423"

 },

 "header": {

 "fontSize": 12,

 "fontFace": "Segoe UI Semibold",

 "color": "#252423"

 },

 "label": {

 "fontSize": 10,

 "fontFace": "Segoe UI",

 "color": "#252423"

 }

 }

}

Primary class Secondary classes Class name in JSON Settings Associated visual objects

Light lightLabel #605E5C Legend text
Button text
Category Axis labels
Funnel chart data labels
Funnel chart conversion rate labels
Gauge target
Scatter chart category label
Slicer items

Bold boldLabel Segoe UI Bold Matrix subtotals
Matrix grand totals
Table totals

Large and Light largeLightLabel #605E5C
12pt

Card category labels
Gauge labels
Multi-row card category labels

Small and Light smallLightLabel #605E5C
9pt

Data labels
Value axis labels

You can still use visual styles to set any specific formatting you want, and that will override any color or text classes that have been set. Microsoft
expects with these new changes for most users to stick to the color and text classes the majority of the time, and only use the visual styles for non-
color / text options (such as turning titles on / off by default).

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Their Design and Research team spent time developing a new set of themes that have more variety (such as Innovate, a dark theme) and show off
more theme-able feature (such as Bloom, with its background image):

To go along with the new theme JSON options, Microsoft is updating the themes available for reports and changing the default theme for new reports.

New default themes

The new default theme is meant to both align better with Microsoft’s design language and follow best design practices for visuals.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Some visual updates with the new default theme are:

	 •	 Larger, darker, more readable text
	 •	 Smaller bubble sizes for scatter and map visuals
	 •	 Wider line strokes for line and combo charts

	 •	 Updated layout for pie and donut charts to improve readability
	 •	 Expand / collapse on by default for matrices
	 •	 Backgrounds on for visuals by default.

You can still find the previous themes under the ‘More themes…’
submenu any time you want to reach them. One thing to remember
around custom themes is that they always build on top of the default
theme. Therefore, if you created your own custom theme that just set the
data colours and nothing else, if you imported that theme into a report
with the new default applied, it would still have expand / collapse on by

default, backgrounds on for visuals, etc. It may look different compared
to when you imported it to a report with the old default theme. If you
want your theme to look exactly the same way it did previously, you can
first set the theme to ‘Classic’ in the theme dropdown, so the default
theme has the old settings and then import your custom theme.

Once you unpin a built-in visual, it moves under the dotted line within
the pane, and next time you open a report, it won’t show unless you
have that visual type used already within the report, in which case, it

will show below the dotted line. This means that the only difference in
experience between built-in and custom visuals is that the built-in ones
initially show by default.

Some reasons you might wish to do this include:

	 •	 You never use specific visuals and want to declutter the pane
	 •	 You don’t require specific visual types and don’t want to see it as an option
	 •	 You’re using a custom visual version of a visual type and don’t want to be mistakenly click on the built-in version you never use.

If you later want the default visuals back, you can use an option to restore the original visuals to the pane.

To go along with the new theme JSON options, Microsoft is updating the themes available for reports and changing the default theme for new reports.

Another update in this area is that you can now right-click on any visual in the Visualization pane to see an About dialog with more information on
the visual.

You’ll be able to see things such as the visual’s ID, version number, where you got the visual from, and the support information.

‘Personalized Visualization’ pane improvements (Preview)

UNPIN DEFAULT VISUALS

ABOUT INFO FOR VISUALS

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

While in the Modeling view, you can now enter in a custom format string to customise how the field will show in visuals. To do this, first select the
field in the Fields list and select the custom format option in the Formatting card of the Properties pane:

There are more formatting features in this update that may be conditionally formatted, moving Power BI Desktop ever closer to the goal of everything
within the Formatting pane being conditionally formattable.

From there, you’ll be able to select from a list of commonly used format strings.

You may use this input box to enter in your own format string:

Once you enter in your custom format string, it will immediately be reflected in the Data view and Report view.

Custom format strings

Conditional formatting for more visual formatting options

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Alt text is the first feature that now has conditional formatting. This is
a positive step forward in terms of accessibility. Alt text, which is read
off by screen readers whenever the visuals are in focus, can now be
dynamically changed based on the current filter state of the visual. For

example, you may call out in the alternative text both the highest and the
lowest categories and have confidence it will always reflect the current
data in the visual. Now that’s cool!

Border color is the next feature that has also added this capability. Just as you can with backgrounds, you can now dynamically adjust the border
colour based on current filter state. This could be an option to use if you want to colour a visual based on a specific KPI but disagreed with the
background colour that appeared by default.

Back in June, Microsoft added conditional formatting to ‘fill color for gauge’, and this update sees this expanding to four other gauge properties as well:

	 •	 Target text color

	 •	 Target fill color

	 •	 Data label color

	 •	 Callout value color

ALT TEXT

BORDER COLOUR

GAUGE COLOURS

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Often, end users don’t know when they may drill through on a visual to another report page. To help with this, Power BI Desktop has now added text
to the visual’s ToolTip to let them know it’s enabled:

The PowerApps marketplace visual allows you to add the power of
applications to your reports and dashboards. The PowerApps visual
brings forms and data editing directly to Power BI by allowing you to

embed your own PowerApps right in your report or dashboard. As of this
update, the visual is now Generally Available and certified, which means
you may use the visual in even more places.

Drill through discoverability improvement

PowerApps visual now Generally Available and certified

New DAX expressions: REMOVEFILTERS and CONVERT

There are two new DAX expressions this month:

	 •	 REMOVEFILTERS is the same as ALL when used inside CALCULATE to remove filters
	 •	 CONVERT changes the expression to another data type.

The PostgreSQL connector has been enhanced with query folding over a native query. You can now paste in a native query when connecting to a
PostgreSQL database, with folding capable operations applied on top according to normal Import or Direct Query logic.

PostgreSQL connector enhancements

SUPPORT FOR FOLDING OVER NATIVE DATABASE QUERIES

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

The DirectQuery support within the PostgreSQL connect that was announced last month now becomes Generally Available.

DIRECTQUERY SUPPORT GENERALLY AVAILABLE

With this update, it is now possible to export data profiling information by copying it to the clipboard from the Power Query Editor. The new copy
option is available from all Data Profiling surfaces as described below:

Copy to clipboard from data profiling

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Template applications are a great way to provide Power BI users with
installable, ready to use applications. Whilst they are not always exactly
what you may want, these templates contain reports, dashboards and
data models that can connect to your data, creating immediate value
and action.

The Google Analytics report app is one of the more popular templates
and is produced by Havens Consulting. The report model was built using
the Google Analytics data connector. It can be connected to your own
Google Analytics data using your own credentials.

This update sees general performance improvements for multi-
dimensional users of Analysis Services 2019 (we’ll pretend we know
what this means). For those so affected, when using the new Release
Candidate of SQL Analysis Services 2019, you’ll see more performant
queries and optimization of measure execution. This improvement,
which some may know as “Super DAX”, helps reduce the “chattiness”
between Power BI and Analysis Services.

Some other features that come with this are multi-dimensional support
for expand / collapse on row headers, cross-highlighting support across
different tables, and high density sampling for visuals that support it. You
will need to enable this setting in Analysis Services to take advantage of
it in Power BI.

The report itself enables users to perform a deep-dive analysis on daily
page views with forecasting and adjustable rolling average, month-over-
month traffic gain or loss, top pages visited, traffic source trends over

time, and more. Furthermore, the report contains many useful examples
of Power BI features and functionality including bookmarks, what-if
parameters, advanced conditional formatting and custom visuals.

You can install the app right in the Power BI Service and set its parameters to your Google Analytics view ID. Once you install it, the report is now
yours, so you can customise and share as much as you want.

Google Analytics report

Performance improvements for multi-dimensional models

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

This update also introduces runtime constant folding to improve query performance for some DirectQuery models. The amount of performance
improvements you’ll see will vary depending on the DAX expressions you’re using, the model structure, speed of the DirectQuery source, etc.

More next month we’re sure!

There are five new settings for your Premium capacities in the admin portal. Now, you can set limits on “Max Offline Dataset Size” with the allowable
range from 0.1 to 10 GB and even set limits on queries to prevent noisy reports from impacting others using the capacity. You can use these new
settings to create a more predictable and performant capacity for your organisation.

There is now custom branding for the Power BI Service. With this update, you change the theme colour that appears in the top navigation bar, add
your company logo, and modify your default landing page by adding a cover image.

Query performance improvements for DirectQuery models

New capacity settings for Power BI Premium

Custom branding for your organisation

Power BI Mobile and Service latest updates

One month I am going to sit here and write, “nope, nothing happened this month”. But it’s not going to be this month. There are still more updates
for Power BI Mobile and Service:

	 •	 New capacity settings for Power BI Premium
	 •	 Custom branding for your organisation
	 •	 Update for On-premises data gateway
	 •	 Summarised data export with build permission
	 •	 URL parameters for paginated reports
	 •	 Support for monthly e-mail subscriptions
	 •	 AAD app proxy integration with mobile.

Let’s go through them.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

It has long been recognised that the limitations on export of summarised
data from a visual are overly restrictive. Therefore, Microsoft has
adjusted their approach to allow users with the Read permission to
export summarised data from a visual. Please note that exporting the

underlying data for a visual will continue to require Build permission.
The underlying data is the detailed rows that were rolled up to show in
the visual.

This update brings in the ability to use URL parameters for paginated
reports. Now, report authors may send commands to paginated reports
in Power BI by adding a parameter to a URL. For example, you can pass

report parameters to a report by including them in a paginated report
URL, and even construct this URL dynamically in a Power BI report and
drillthrough to a paginated report by using a DAX measure.

Microsoft has continued to add more granular controls to e-mail subscriptions in the Power BI Service by adding an option for you to subscribe
monthly to reports, dashboards and paginated reports.

The Power BI team has partnered with the Azure Active Directory team to integrate Power BI Mobile applications with Azure Active Directory (AAD)
Application Proxy. With this feature, you can now connect to Report Server hosted within your orgranisation from Power BI Mobile app, without the
need to set up complex on-premise configurations.

That’s it for this month – more next time, we’re certain!

Summarised data export with build permission

URL parameters for paginated reports

Support for monthly e-mail subscriptions

AAD app proxy integration with mobile

Now, there’s a new, improved version of the on-premises data gateway together with an updated mashup engine to match the Power BI Desktop version.

Update for On-premises data gateway

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Power BI Mobile apps gets a new look (Preview)

Power BI Mobile provides the tools you need to stay connected to your
data, wherever you may be. However, as organisations grow, it becomes
increasingly difficult for Power BI users to discover and manage the
content that matters to them on the go. Microsoft has indeed recognised
that users must be able to find exactly what they need quickly and easily
when they’re using the Power BI Mobile app to view and interact with
their content.

With this borne in mind, last month saw the public Preview of the ‘new
look’ now available on Power BI Mobile. Now, there is a home page
that provides quick access to your commonly used content and includes
your organisation brand theme and new navigation bars that give you a
simpler way of navigating through the app.

As this is a Preview, you’ll need to opt in and turn it on in the mobile app. Once you do that, the app will display several new features:

	 •	 Home page
	 •	 Organisation branding
	 •	 Navigation bar.

Here’s an example of how the new home page shows on the mobile app:

At the top, the app will show your organisation’s branding, so it will have same look and feel as your Power BI Service to match your corporate theme. The
organisation brand elements are defined by your Power BI administrator in the Power BI Service, and will show up in your Power BI Mobile app as well.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

Microsoft has re-built the app navigation, implementing a more standard
mobile navigation experience to make it easier to find your way in the
Power BI mobile app. Now, instead of using the top left ‘hamburger’
menu, you have a bottom navigation bar, providing you with an easy way
to swap between pages and use your preferred way to find your content.

From the top bar you can access the notification center and search for
Power BI content. If you want to connect (or switch) to Report Server or
access the app setting page, just tap on your account avatar. Simple.

It’s noted this may not appeal to all. During the Preview period the new

look experience will require you to turn it on explicitly, so you have time
to become accustomed. There are several ways you can opt-in to the new
look Preview. You may turn it on from the introduction banner or, if you
have closed the banner, you can opt in from the side panel or from the app
settings.

The Preview period allows us to get your input and feedback on our new
design, learn from it and improve. During this period, Microsoft will
continue to add new capabilities and might adjust the experience, based
on your feedback. You have been warned!!

Probably not a function you are going to use every day of the week. Or
any for that matter. This (sort of) replaces the equals operator (“=”) in
that it gives it a “Goodrem” for its money… Essentially, this function
tests whether two values are equal, returning 1 if number1 = number2,

otherwise it returns 0 (zero). You may use this function to filter a set of
values. For example, by summing several DELTA functions you calculate
the count of equal pairs. This function is also known as the Kronecker
Delta function.

The A to Z of Excel Functions: DELTA

The DELTA function employs the following syntax to operate:

DELTA(number1, [number2])

The DELTA function has the following arguments:

	 •	 number1: this is required and represents the first number
	 •	 number2: this argument is optional. This is the second number. If omitted, number2 is assumed to be zero.

It should be further noted that:

	 •	 If number1 is non-numeric, DELTA returns the #VALUE! error value
	 •	 If number2 is non-numeric, DELTA returns the #VALUE! error value.

Please see our example below:

In addition, the home page provides two tabs:

	 •	 Quick access: here, you’ll have a way to view and find your most commonly accessed items in Power BI. You’ll be able to view the content cards 	
		 that provide easy access to that content, in addition to metadata for the content itself, such as its last refresh time. You may look for your items in 	
		 the Frequents section, where you’ll see a list of items ordered by the number of times you viewed them; you can use the Recents list to view the 	
		 items that you’ve recently accessed

	 •	Activity (coming soon): here, you’ll receive a feed with events happening in your Power BI account that are relevant to you. The feed ensures you 	
		 can stay up to date with the latest comments and activities.

The A to Z of Excel Functions: DEVSQ

This function returns the sum of squares of deviations of data points from their sample mean. This is a key component of such statistical calculations
as standard deviation.

The DEVSQ function employs the following syntax to operate:

DEVSQ(number1, [number2], ...)

The DEVSQ function has the following arguments:

	 •	 number1, number2, ...: number1 is required, subsequent numbers are optional. You may have between one and 255 arguments for which 	
		 you want to calculate the sum of squared deviations. You can also use a single array or a reference to an array instead of arguments 	
		 separated by commas.

mailto:contact@sumproduct.com
http://www.sumproduct.com

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

More Excel Functions next month…

Upcoming SumProduct Training Courses

Location Course Date Duration

Sydney Power Pivot, Power Query and Power BI 9 - 11 Oct 2019 3 Days

Sydney Excel Tips and Tricks 4 Nov 2019 1 Day

Sydney Financial Modelling 5 - 6 Nov 2019 2 Days

Sydney Power Pivot, Power Query and Power BI 11 - 13 Nov 2019 3 Days

Melbourne Excel Tips and Tricks 6 Nov 2019 1 Day

Melbourne Financial Modelling 7 - 8 Nov 2019 2 Days

Melbourne Power Pivot, Power Query and Power BI 9 - 11 Dec 2019 3 Days

Sydney Power Pivot, Power Query and Power BI 9 - 11 Dec 2019 3 Days

Sydney Excel Tips and Tricks 16 Dec 2019 1 Day

It should be further noted that:

	 •	 arguments can either be numbers or names, arrays, or references that contain numbers
	 •	 logical values and text representations of numbers that you type directly into the list of arguments are counted
	 •	 if an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero
		 are included
	 •	 arguments that are error values or text that cannot be translated into numbers cause errors
	 •	 the equation for the sum of squared deviations is:

 Please see the example below:

mailto:contact@sumproduct.com
http://www.sumproduct.com

Link to Others
These newsletters are not intended to be
closely guarded secrets. Please feel free
to forward this newsletter to anyone you
think might be interested in converting to

“the SumProduct way”.

If you have received a forwarded
newsletter and would like to receive
future editions automatically, please

subscribe by completing our newsletter
registration process found at the foot of
any www.sumproduct.com web page.

Any Questions?
If you have any tips, comments or queries
for future newsletters, we’d be delighted
to hear from you. Please drop us a line at

newsletter@sumproduct.com.

Our Services
We have undertaken a vast array of
assignments over the years, including:
· 	 Business planning
· 	 Building three-way integrated 		
	 financial statement projections
· 	 Independent expert reviews
· 	 Key driver analysis
· 	 Model reviews / audits for internal 	 	
	 and external purposes
· 	 M&A work
· 	 Model scoping
· 	 Power BI, Power Query & Power Pivot
· 	 Project finance
· 	 Real options analysis
· 	 Refinancing / restructuring
· 	 Strategic modelling
· 	 Valuations
· 	 Working capital management
If you require modelling assistance of any
kind, please do not hesitate to contact us
at contact@sumproduct.com.

Training
SumProduct offers a wide range of
training courses, aimed at finance
professionals and budding Excel experts.
Courses include Excel Tricks & Tips,
Financial Modelling 101, Introduction to
Forecasting and M&A Modelling.

Drop us a line at training@sumproduct.com
for a copy of the brochure or download
it directly from
http://www.sumproduct.com/training.

Check out our
more popular
courses in
our training
brochure:

There are over 540 keyboard shortcuts in Excel. For a comprehensive list, please download our Excel file a
www.sumproduct.com/thought/keyboard-shortcuts. Also, check out our new daily Excel Tip of the Day feature on the
www.sumproduct.com homepage.

Key Strokes
Each newsletter, we’d like to introduce you to useful keystrokes you may or may not be aware of. This month, we thought we would
provide a reminder of the function keys, this time with SHIFT:

Keystroke What it does
SHIFT + F1 What is… (Help)
SHIFT + F2 Insert / edit comment
SHIFT + F3 Function wizard
SHIFT + F4 Find next (from most recent search)
SHIFT + F5 Find dialog
SHIFT + F6 Previous Pane
SHIFT + F8 Add to Selection Mode
SHIFT + F9 Calculate sheet
SHIFT + F10 Activate context menu (right-click)
SHIFT + F11 Insert new worksheet
SHIFT + F12 Save

contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071 contact@sumproduct.com | www.sumproduct.com | +61 3 9020 2071

contact@sumproduct.com
www.sumproduct.com
+61 3 9020 2071

Sydney Address:	 SumProduct Pty Ltd, Suite 803, Level 8, 276 Pitt Street, Sydney NSW 2000
New York Address:	 SumProduct Pty Ltd, 48 Wall Street, New York, NY, USA 10005
London Address:	 SumProduct Pty Ltd, Office 7, 3537 Ludgate Hill, London, EC4M 7JN, UK
Melbourne Address:	SumProduct Pty Ltd, Level 9, 440 Collins Street, Melbourne, VIC 3000
Registered Address:	SumProduct Pty Ltd, Level 6, 468 St Kilda Road, Melbourne, VIC 3004

Sydney Financial Modelling 17 - 18 Dec 2019 2 Days

Melbourne Excel Tips and Tricks 13 Jan 2020 1 Day

Melbourne Financial Modelling 14 - 15 Jan 2020 2 Days

Sydney Power Pivot, Power Query and Power BI 15 - 17 Jan 2020 3 Days

Sydney Excel Tips and Tricks 27 Jan 2020 1 Day

Sydney Financial Modelling 28 - 29 Jan 2020 2 Days

Sydney Power Pivot, Power Query and Power BI 17 - 19 Feb 2020 3 Days

Sydney Excel Tips and Tricks 2 Mar 2020 1 Day

Sydney Financial Modelling 3 - 4 Mar 2020 2 Days

Melbourne Power Pivot, Power Query and Power BI 9 - 11 Mar 2020 3 Days

